Главная страница
qrcode

шпоры фх. 1. Физическая химия цель, задачи, методы исследования. Основные понятия физической химии


Название1. Физическая химия цель, задачи, методы исследования. Основные понятия физической химии
Дата09.09.2019
Размер0.58 Mb.
Формат файлаdocx
Имя файлашпоры фх.docx
ТипЗакон
#64779
страница4 из 8
Каталог
1   2   3   4   5   6   7   8

Теп.эф.х.р. наз.кол-во теплоты,которое выд-ся или поглощается при необратимом протекании реакции,когда ед. работой яв-ся только работа расширения.При этом тем-ры исх.в-в должны быть одинаковыми.Теп.эф х.р. при постоянном объёме (изохорный процесс) равен приращению внутр.эн.системы во время реакции;теп.эф. х.р. при постоянном давлении (изобарный процесс)равен приращению энтальпии во время этой реакции:

QДля бесконечно малогоизменения теплоты в изохорном и изобарном процессах можно написать:
;


,
Эти ур-я выр-ют завис-ть константы равновесия х.р. протекающей при P и V=const от T и наз-ся ур-ми изобары и изохоры Вант-Гоффа.

Левая часть ур-я пред-ет собой тем.коэф.константы равновесия знак которой опр-ся знаком измен-я энтальпии или внутр. эн-гии:1)Х.р. протекает с выд-ем тепла т.е.
Интегрированные формы ур-я изохоры В-Г и их исполь-ие для расчетов.

После разделения переменных в ур-е изохоры В-Г:
даёт след. вид ур-я:
В узком интервале t можно считать,что теп.эф.х.р. не зависит от t тогда
Граф-ки ур-е (2) пред-ет собой прямую линию в коор-тах:
tg
27)Фазовые равновесия основные опр-я:
Термодин.теория фазовых равновесий и р-ров позволяет на основе опытных данных по диаграммам состояния теор.предвидеть и рассчитать условия для получения нужных продуктов путём испарения,крист-ции,экстракции и др.фаз.переходов.

Фаза-совокупность частей системы,обладающих одинаковыми термодин.св-вами и отделённых от др.частей поверх-тями раздела.

Составляющие в-ва системы(компоненты)-индивидуальные хим.в-ва,которые могут быть выделены из системы и существовать вне её.

Фазовое равновесие(гетерогенное)-равновесие в системе,состоящей из нескольких фаз.

Правило фаз Гиббса:число степеней свободы (независимых параметров)системы,на которую влияют только Т и Р,равно числу независимых компонентов минус число фаз плюс два:F=K-Ф+2.

Св-ва конден.систем прак-ки не зависят от Р,поэтому числов внеш. факторов умен-ся на ед.,а по правилу фаз опр-ся так называемая условная вариантность системы:F=K-Ф+1.

Взависимости от числа степеней свободы сис-мы дел-ся:инвариантные и конвариантные,(F=0),моновариантные(F=1)дивариантные(F=2),и т.д.При F=0 в равновесии нах-ся наибольшее число фаз для данной сис-мы.

Термодин.степенью свободы системы наз-ся число термодин.параметров,которые можно независимо менять,не меняя при этом числа и вида фаз данной системы.

В однокомпонентных системах фазы состоят из одного в-ва в различных агрегатных состояниях.Если в-во может давать различные крст-кие модиф-ции,то каждая из них яв-ся особой фазой.

Диаграмма состояния однокомпонентной системы (Н2О при средних Р до 1МПа).


3 кривые разбивают диаграмму на поля,каждое из которых отвечает одному из агрегат.состояний воды-пару,жидкости или льду.Кривые отвечают равновесию между соот-щими 2-мя фазами.

Кривая ОС хар-ет зависимость Р насыщ.пара жид.воды от Т и наз-ся кривой испарения;кривая ОВ-завис-ть Т замерзания воды от внеш.Р и наз-ся кривой плавления;кривая ОА-завис-ть плавления насыщ.пара льда от Т и наз-ся кривой возгонки.Точка О выр-ет условия одновременного равновесия между паром,льдом и жид. водой.
28)Равновесие чис-го в-ва в 2-х фазах одноком.сис-мы.
Рассмотрим закономерности,связанные с превращением одной фазы чистого в-ва в другую.Сюда можно отнести плавление,испарение,кипение,возгонку и переход тв.тела из одной полиморфной модиф-ции в другую.На основе соотношения dG


При равновесии между фазами выполняется условие
где
Для обратимых изотерм.переходов
, наз. урав-е Клайперона-Клаузиуса .
Для процессов испарения ур-е Клайперона Клаузиуса (3)удобно представить в др.виде.если рассматр.пар при внешних условиях (Т,р),то V данного кол-ва в-ва в парообразном состоянии знач-но больше его V в жид. состоянии,т.е. Vможно считать прак-ки равным объёму пара и заменить

С учётом соотношений (4) и (5) ур-е (3) примет вид (6):


Поскольку29) Определение теплоты спарение расчетным и графическим способами на основе уравнения Клаузиуса – Клапейрона.
физической химии, рассматривающий термодинамические явления в области химии, а также зависимости термодинамических свойств веществ от их состава и агрегатного состояния. Т. х. тесно связана с термохимией, учением о равновесии химическом и учением о растворах (в частности, электролитов), теорией электродных потенциалов, с термодинамикой поверхностных явлений.
Т. х. базируется на общих положениях и выводах термодинамики и прежде всего - на первом начале термодинамики и втором начале термодинамики. Первое начало и важнейшее его следствие - теплоты образования веществ, значения которых для каждого из реагентов позволяют легко вычислить тепловой эффект реакции; для органических веществ подобную роль играют теплоты сгорания. Наряду с измерениями тепловых эффектов различных процессов (см. Калориметрия) используются и определение энергии связи между атомами на основе спектральных данных, и различные приближённые закономерности. Первое начало термодинамики лежит в основе Кирхгофа уравнения, выражающего температурную зависимость теплового эффекта химической реакции. Второе начало термодинамики служит основой учения о равновесии, в частности химического. Его применение к изучению химических реакции впервые было дано в работах Дж. Гиббса, А. Л. Потылицына, Г. Гельмгольца, Я. Вант-Гоффа, А. Л. Ле Шателье. В Т. х. второе начало позволяет установить, как изменение внешних условий (например, температуры, давления) влияет на равновесие и, следовательно, какими они должны быть, чтобы рассматриваемый процесс мог совершаться самопроизвольно (то есть без затраты работы извне) в нужном направлении и с оптимальными результатами.
В Т. х. для определения характеристик процесса применяют различные термодинамические функции. Наряду с энтропией S, изменением которой наиболее просто характеризуются процессы в изолированных системах, широко используют потенциалы термодинамические, позволяющие получить характеристики процессов при различных условиях их проведения

Рассмотрим закономерности, связанные с превращением одной фазы чистого вещества в другую. Сюда можно отнести плавление, испарение, кипение, возгонку и переход твёрдого тела из одной полиморфной модификации в другую.

Выражение dp/dT=ΔH
Для процессов испарения и сублимации:
Если рассматривать пар при внешних условиях (Т,р), достаточно удалённых от критической точки, то объём данного кол-ва вещества в парообразном состоянии значительно больше его объёма в жидком состоянии, т.е.V>V
Dlnp/dT=ΔH2, где ΔH30) Гетерогенное равновесие. Бинарные системы. Законы Рауля. Законы Коновалова.
Обратимая реакция, протекающая в любой системе при постоянной температуре


характеризуется наступлением состояния истинного химического равновесия. В этом состоянии выполняется (по определению) условие неизменности во времени молярных концентраций реагентов и продуктов, называемых равновесными концентрациями.

В отличие от молярной концентрации некоторого вещества В (с
Для обратимой химической реакции, протекающей при некоторой температуре, устанавливаются любые, но постоянные равновесные концентрации [А], [В], [С], [D]. Они не зависят друг от друга, а определяются только положением состояния равновесия.
В соответствии с законом действующих масс состояние равновесной химической системы характеризуется константой равновесия:


Выражение (5.2) позволяет рассчитать Kгомогенной газофазной реакции (5.1), а также для гомогенной реакции в растворе, например

или концентрацию одного из веществ по известным равновесным концентрациям остальных веществ и K
Первый закон Коновалова: пар над семью двух летучих жидкостей относительно богаче тем из компонентов, прибавление которого к смеси повышает общее давление пара при данной температуре или понижает температуру кипения смеси при данном давлении:

X’X
X’X
Для летучих смесей первого типа увеличение содержания второго компонента в растворе повышает общее давление пара , так как производная dp/dx
Второй закон Коновалова: экстремальные точки на кривой общее давление пара-состав раствора( или на кривой температура кипения –состав раствора) отвечают растворам , состав которых одинаков с составом равновесного с ним пара. Жидкая летучая смесь такого состава называется азеотропным:

X’
P****
Эти выражения называются законом Рауля или уравнениями Рауля. Равновесное парциальное давление пара компонента в идеальном растворе пропорционально молярной доле этого компонента в растворе. Зависимость парциального давления пара компонента от состава имеет вид прямой. Для твёрдого растворённого вещества p*
Уравнение Рауля позволяет установить зависимость давление пара над чистым твёрдым растворённым веществом от его растворимости в идеальном растворе. В насыщенном идеальном растворе парциальное давление пара растворённого вещества над раствором р*
Р**
В предельно разбавленном растворе ур-е Рауля применимо к растворителю. По этому ур-ю можно определить молекулярную массу нелетучего растворенного вещества, если известно давление пара растворителя над разбавленным раствором :

М*
К растворённому веществу в предельно разбавленном растворе формула Рауля не применима.
31) Основные понятия химической кинетики: скорость, механизм реакции.
химическая кинетика- это учение о хим.процессе, его механизме и закономерностях протекания во времени. Хим.кинетика позволяет предсказывать скорость хим.процессов. для этого нужно знать механизм процесса, т.е. протекание сложных реакций по стадиям. Создание математической теории хим.процесса является в настоящее время необходимым условием для проектирования хим.реакторов. отсутствие таких сведений о механизме многих сложных реакций затрудняет предсказание их скорости и условий осуществления на практике. Хим.реакции являются сложными, т.е. протекают через ряд элементарных стадий. Элементарная стадия является наиболее простой составной частью сложной реакции: каждый акт элементарной стадии представляет собой рез-тат непосредственного взаимодействия и превращения нескольких частиц. Совокупность реакций из элементарных стадий называется механизмом реакции. При протекании реакции по стадиям получаются и расходуются промежуточные вещества. Промежуточными веществами обычно являются активные частицы с неспаренными электронами, так называемые радикалы. Сложные реакции могут состоять из двусторонних, параллельных и последовательных элементарных стадий. Скоростью образования (или изменения содержания данного i-того вещ-ва(компонента)) во время хим.реакции или, другими словами, скростью реакции w(i)по данному i-тому вещ-ву называется изменение кол-ва этого вещ-ваm
w(i)=1/R*dmМеханизм реакции - это совокупность стадии, из которых состоит данный химический процесс. Установление механизма химической реакции - это сложный процесс. Полное описание механизма реакций включает решение нескольких задач:
Подразделение реакций на отдельные этапы и равновесные стадии.
  • Характеристика промежуточных продуктов и оценка их времени жизни.
  • Описание переходного состояния для каждой стадии.
  • Полное описание процессов, как до образования переходного состояния, так и следующих за ним.
    Скорость химической реакции

    Под скоростью химической реакции понимают изменение количества веществ, вступающих в реакцию или образующихся в ходе процесса, в единицу времени, в единице реакционного пространства:
    Количество вещества (n), реагирующего за единицу времени, всегда пропорционально величине реакционного пространства – объему фазы (в гомогенной системе) или площади поверхности раздела фаз (в гетерогенной системе). Различают среднюю и мгновенную (истинную) скорость химической реакции. Средней скоростью реакции за данный промежуток времени называется отношение изменения концентрации исходных веществ (продуктов реакции) ко времени, в течение которого это изменение произошло:
    Мгновенная (истинная) скорость определяется как производная концентрации от времени в каждой точке кинетической кривой, т.е. как отношение изменения концентрации реагирующих веществ или продуктов реакции к бесконечно малому промежутку времени:
    Основной постулат химической кинетики

    Для реакции удельной скоростью.Порядок реакции и молекулярность. Порядок реакции - это сумма показателей степени, в которые возведены концентрации в уравнении основного постулата химической кинетики. Общий порядок реакции может быть равен сумме стехиометрических коэффициентов только для простейших реакций, а в общем случае это не выполняется. Другая важная характеристика химических реакций - молекулярность. Молекулярность - это число молекул, участвующих в одном элементарном химическом акте. Молекулярность – может быть равна единице - это мономолекулярные реакции, 2 - это бимолекулярные и реже – 3 (вероятность столкновения одновременно трех молекул в одном элементарном акте очень мала) - это тримолекулярные реакции.

    32) Основной постулат химической кинетики. Гомогенные, гетерогенные реакции. Порядок и молекулярность реакции, отличая между ними.
    Хими́ческая реа́кция — превращение одного или нескольких исходных веществ (Гомогенные гомофазные реакции. В реакциях такого типа
    1   2   3   4   5   6   7   8

    перейти в каталог файлов


  • связь с админом