Главная страница

Лекции+по+общей+биохимии+_1.+Ферменты_+ЛПФ+2013... 2013г лекция 1 Тема Введение в биохимию. Ферменты строение, свойства, локализация, номенклатура и классификация Биохимия


Скачать 0.52 Mb.
Название2013г лекция 1 Тема Введение в биохимию. Ферменты строение, свойства, локализация, номенклатура и классификация Биохимия
АнкорЛекции+по+общей+биохимии+_1.+Ферменты_+ЛПФ+2013.
Дата15.09.2017
Размер0.52 Mb.
Формат файлаdoc
Имя файлаЛекции+по+общей+биохимии+_1.+Ферменты_+ЛПФ+2013...doc
ТипЛекция
#21
страница1 из 3
Каталогlobzic1

С этим файлом связано 9 файл(ов). Среди них: Лекции+по+общей+биохимии+_2.БО_+ЛПФ+2013.doc, CtSuq9UbG_g.jpg, 5-0z3AAMDH0.jpg, a_bryzheechnaya_verkhnyaya.jpg, Otvety_na_ekzamenatsionnye_preparaty_shpargalka...doc, Golovnoy_mozg.png, Stroenie_mozga.png, Лекции+по+общей+биохимии+_1.+Ферменты_+ЛПФ+2013...doc.
Показать все связанные файлы
  1   2   3



ГБОУ ВПО УГМУ Минздрава РФ

кафедра биохимии


КУРС ЛЕКЦИЙ

ПО ОБЩЕЙ БИОХИМИИ

для студентов 2 курса

лечебно-профилактического

факультета

Модуль 1. Ферменты
Автор: к.б.н., доцент кафедры биохимии Гаврилов И.В.

Екатеринбург,

2013г
ЛЕКЦИЯ № 1

Тема: Введение в биохимию. Ферменты: строение, свойства, локализация, номенклатура и классификация

Биохимия – наука, изучающая вещества, входящие в состав живых организмов, их превращения, а также взаимосвязь этих превращений с деятельностью органов и тканей.

Биохимия – наука, о химических основах процессов жизнедеятельности.

Биохимия - молодая наука, около ста лет назад она возникла на стыке физиологии и органической химии. Термин биохимия ввел в 1903г молодой немецкий биохимик Карл Нейберг (1877-1956).

Современная биохимия как наука делится на:

  1. статическую (анализирует структуру и химический состав организмов);

  2. динамическую (изучает обмен веществ и энергии в организме);

  3. функциональную (исследует взаимодействие химических процессов с биологическими и физиологическими функциями).

По объектам исследования, биохимия делиться на:

  1. биохимию человека и животных;

  2. биохимию растений;

  3. биохимию микроорганизмов;

  4. вирусов.

Мы с вами будем заниматься медицинской биохимией, одним из разделов биохимии человека и животных.

Предметом медицинской биохимии является человек.

Целью курса медицинской биохимии является изучение:

  1. молекулярных основ физиологических функций человека;

  2. молекулярных механизмов патогенеза болезней;

  3. биохимических основ предупреждения и лечения болезней;

  4. биохимических методов диагностики болезней и контроля эффективности лечения.

Задачи курса медицинской биохимии:

  1. изучить теоретический материал;

  2. получить практический навык биохимических исследований;

  3. научиться интерпретировать результаты биохимических исследований.

Медицинская биохимия связана со всеми фундаментальными и клиническими медицинскими дисциплинами. Патогенез любой патологии включает в себя нарушение нормальных биохимических процессов, лежащих в основе физиологических функций организма, а излечение патологии – нормализация нарушенных биохимических процессов и физиологических функций организма. Поэтому, биохимия является фундаментальной наукой для врача.
Ферменты. Химическая природа, физико-химические свойства и биологическая роль.

Основу жизнедеятельности любого организма составляют химические процессы. Практически все реакции в живом организме протекают с участием природных биокатализаторов, называемых ферментами или энзимами.

Ферменты - это белки (установлено в 1922г), которые действуют как катализаторы в биологических системах.

Являясь веществами белкой природы, ферменты обладают всеми свойствами белков:

  1. являются амфотерными соединениями;

  2. вступают в те же качественные реакции, что и белки (биуретовую, ксантопротеиновую, фолина и др.);

  3. подобно белкам растворяются в воде с образованием коллоидных растворов;

  4. обладают электрофоретической активностью;

  5. гидролизуются до аминокислот;

  6. склонны к денатурации под влиянием тех же факторов: температуры, изменениях рН, действием солей тяжелых металлов, действием физических факторов (ультразвук, ионизирующее излучение и др.);

  7. имеют несколько уровней организации макромолекул, что подтверждено данными рентгеноструктурного анализа, ЯМР, ЭПР.


Биологическая роль ферментов заключается в том, что они катализируют контролируемое протекание всех метаболических процессов в организме.
Сравнение каталитического действия ферментов и неорганических катализаторов

Сходство ферментов и

неорганических катализаторов

Отличие ферментов от

неорганических катализаторов

1. Ускоряют только термодинамически возможные реакции

1. Для ферментов характерна высокая специфичность:

субстратная специфичность:

▪ абсолютная (1 фермент - 1 субстрат),

▪ групповая (1 фермент – несколько похожих субстратов)

▪ стереоспецифичность (ферменты работают с субстратами только определенного стереоряда L или D).

каталитическая специфичность (ферменты катализируют реакции преимущественно одного из типов химических реакций – гидролиза, окисления-восстановления и др)

2. Не изменяют состояние равновесия реакций, а только ускоряют его достижение.

2. Высокая эффективность действия: ферменты ускоряют реакции в108-1014 раз.

3. В реакциях не расходуются

3. Ферменты действуют только в мягких условиях (t = 36-37ºС, рН 7,4, атмосферное давление), т.к. они обладают конформационной лабильностью – способностью к изменению конформации молекулы под действием денатурирующих агентов (рН, Т, химические вещества).

4. Действуют в малых количествах

4. В организме действие ферментов регулируется специфически (катализаторы только неспецифически)

5. Чувствительны к активаторам и ингибиторам

5. Широкий диапазон действия (большинство процессов в организме катализируют ферменты).

В настоящее время учение о ферментах является центральным в биохимии и выделено в самостоятельную науку – энзимологию. Достижения энзимологии используются в медицине для диагностики и лечения, для изучения механизмов патологии, а, кроме того, и в других областях, например, в сельском хозяйстве, пищевой промышленности, химической, фармацевтической и др.

Строение ферментов

Метаболит - вещество, которое участвует в метаболических процессах.

Субстратвещество, которое вступает в химическую реакцию.

Продуктвещество, которое образуется в ходе химической реакции.

Ферменты характеризуются наличием специфических центров катализа.

Активный центр (Ац) – это часть молекулы фермента, которая специфически взаимодействует с субстратом и принимает непосредственное участие в катализе. Ац, как правило, находиться в нише (кармане). В Ац можно выделить два участка: участок связывания субстрата – субстратный участок (контактная площадка) и собственно каталитический центр.

Большинство субстратов образует, по меньшей мере, три связи с ферментом, благодаря чему молекула субстрата присоединяется к активному центру единственно возможным способом, что обеспечивает субстратную специфичность фермента. Каталитический центр обеспечивает выбор пути химического превращения и каталитическую специфичность фермента.

У группы регуляторных ферментов есть аллостерические центры, которые находятся за пределами активного центра. К аллостерическому центру могут присоединяться “+” или “–“ модуляторы, регулирующие активность ферментов.

Различают ферменты простые, состоят только из аминокислот, и сложные, включают также низкомолекулярные органические соединения небелковой природы (коферменты) и (или) ионы металлов (кофакторы).

Коферменты – это органические вещества небелковой природы, принимающие участие в катализе в составе каталитического участка активного центра. В этом случае белковую составляющую называют апоферментом, а каталитически активную форму сложного белка – холоферментом. Таким образом: холофермент = апофермент + кофермент.

В качестве коферментов функционируют:

  • гемы,

  • нуклеотиды,

  • коэнзим Q,

  • ФАФС,

  • SAM,

  • Глутатион

  • производные водорастворимых витаминов:

Витамины

Коферменты

РР (никотиновая кислота)

НАД+, НАДФ+

В2 (рибофлавин)

ФАД, ФМН

В6 (пиридоксаль)

Пиридоксальфосфат

В1 (тиамин)

Тиаминпирофосфат

В12

Кобаламины

Кофермент, который присоединен к белковой части ковалентными связями называется простетической группой. Это, например, FAD, FMN, биотин, липоевая кислота. Простетическая группа не отделяется от белковой части. Кофермент, который присоединен к белковой части нековалентными связями называется косубстрат. Это, например, НАД+, НАДФ+. Косубстрат присоединяется к ферменту в момент реакции.

Кофакторы ферментов – это ионы металлов, необходимые для проявления каталитической активности многих ферментов. В качестве кофакторов выступают ионы калия, магния, кальция, цинка, меди, железа и т.д. Их роль разнообразна, они стабилизируют молекулы субстрата, активный центр фермента, его третичную и четвертичную структуру, обеспечивают связывание субстрата и катализ. Например, АТФ присоединяется к киназам только вместе с Mg2+.

Изоферменты – это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам (сродству к субстрату, максимальной скорости катализируемой реакции, электрофоретической подвижности, разной чувствительности к ингибиторам и активаторам, оптимуму рН и термостабильности). Изоферменты имеют четвертичную структуру, которая образована четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.

В качестве примера можно рассмотреть лактатдегидрогеназу (ЛДГ), фермент, который катализирует обратимую реакцию:

НАДН2 НАД+

пируват ←ЛДГ→ лактат

ЛДГ существует в виде 5 изоформ, каждая из которых состоит из 4-х протомеров (субъединиц) 2 типов М (muscle) и Н (heart). Синтез протомеров М и Н типа кодируется двумя разными генетическими локусами. Изоферменты ЛДГ различаются на уровне четвертичной структуры: ЛДГ1 (НННН), ЛДГ2 (НННМ), ЛДГ3 (ННММ), ЛДГ4 (НМММ), ЛДГ5 (ММММ).

Полипептидные цепи Н и М типа имеют одинаковую молекулярную массу, но в составе первых преобладают карбоновые аминокислоты, последних – диаминокислоты, поэтому они несут разный заряд и могут быть разделены методом электрофореза.

Кислородный обмен в тканях влияет на изоферментный состав ЛДГ. Где доминирует аэробный обмен, там преобладают ЛДГ1, ЛДГ2 (миокард, надпочечники), где анаэробный обмен - ЛДГ4, ЛДГ5 (скелетная мускулатура, печень). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ. У зародыша преобладают ЛДГ4, ЛДГ5. После рождения в некоторых тканях происходит увеличение содержания ЛДГ1, ЛДГ2.

Существование изоформ повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям. По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.

Локализация и компартментализация ферментов в клетке и тканях.

Ферменты по локализации делят на 3 группы:

I – общие ферменты (универсальные)

II - органоспецифические

III - органеллоспецифические

Общие ферменты обнаруживаются практически во всех клетках, обеспечивают жизнедеятельность клетки, катализируя реакции биосинтеза белка и нуклеиновых кислот, образование биомембран и основных клеточных органелл, энергообмен. Общие ферменты разных тканей и органов, тем не менее, отличаются по активности.

Органоспецифичные ферменты свойственны только определенному органу или ткани. Например: Для печени – аргиназа. Для почек и костной ткани – щелочная фосфатаза. Для предстательной железы – КФ (кислая фосфатаза). Для поджелудочной железы – α-амилаза, липаза. Для миокарда – КФК (креатинфосфокиназа), ЛДГ, АсТ и т.д.

Внутри клеток ферменты также распределены неравномерно. Одни ферменты находятся в коллоидно-растворенном состоянии в цитозоле, другие вмонтированы в клеточных органеллах (структурированное состояние).

Органеллоспецифические ферменты. Разным органеллам присущ специфический набор ферментов, который определяет их функции.

Органеллоспецифические ферменты это маркеры внутриклеточных образований, органелл:

  1. Клеточная мембрана: ЩФ (щелочная фосфатаза), АЦ (аденилатциклаза), К-Nа-АТФаза

  2. Цитоплазма: ферменты гликолиза, пентозного цикла.

  3. ЭПР: ферменты обеспечивающие гидроксилирование (микросомальное окисление).

  4. Рибосомы: ферменты обеспечивающие синтез белка.

  5. Лизосомы: содержат гидролитические ферменты, КФ (кислая фосфатаза).

  6. Митохондрии: ферменты окислительного фосфорилирования, ЦТК (цитохромоксидаза, сукцинатдегидрогеназа), β-окисления жирных кислот.

  7. Ядро клетки: ферменты обеспечивающие синтез РНК, ДНК ( РНК-полимераза, НАД-синтетаза).

  8. Ядрышко: ДНК-зависимая-РНК-полимераза


В результате в клетке образуются отсеки (компартменты), которые отличаются набором ферментов и метаболизмом (компартментализация метаболизма).

Среди ферментов выделяется немногочисленная группа регуляторных ферментов, которые способны отвечать на специфические регуляторные воздействия изменением активности. Эти ферменты имеются во всех органах и тканях и локализуются в начале или в местах разветвления метаболических путей.

Строгая локализация всех ферментов закодирована в генах.

Определение в плазме или сыворотке крови активности органо- органеллоспецифических ферментов широко используется в клинической диагностике.

Классификация и номенклатура ферментов

Номенклатураназвания индивидуальных соединений, их групп, классов, а также правила составления этих названий. Номенклатура ферментов бывает тривиальной (короткое рабочее название) и систематической. По систематической номенклатуре, принята в 1961г Международным союзом биохимии, можно точно идентифицировать фермент и его катализируемую реакцию.

Классификация – разделение чего либо по выбранным признакам.

  • Классификация ферментов основана на типе катализируемой химической реакции;

  • На основании 6 типов химических реакций ферменты, которые их катализируют, подразделяют на 6 классов, в каждом из которых несколько подклассов и поподклассов (4-13);

  • Каждый фермент имеет свой шифр КФ 1.1.1.1. Первая цифра обозначает класс, вторая - подкласс, третья - подподкласс, четвертая - порядковый номер фермента в его подподклассе (в порядке открытия).

  • Название фермента состоит из 2 частей: 1 часть – название субстрата (субстратов), 2 часть – тип катализируемой реакции. Окончание – АЗА;

  • Дополнительная информация, если необходима, пишется в конце и заключается в скобки: L-малат + НАДФ+ ↔ ПВК + СО2 + НАДН2 L-малат: НАДФ+ - оксидоредуктаза (декарбоксилирующая);

В правилах названия ферментов нет единого подхода.
1. Оксидоредуктазы

Катализируют окислительно-восстановительные реакции. В реакцию вступают 2 вещества и 2 образуются, одно окисляется, другое восстанавливается: Sвост + S’окисл ↔ S’вост + Sокисл

Оксидоредуктазы делятся на: дегидрогеназы (отщепляют Н от субстратов), оксидазы (переносят Н с субстрата на кислород), оксигеназы (включают кислород в молекулу субстрата), гидроксипероксидазы (разрушают перекиси водорода и органические перекиси).

Систематическое название включает в себя название донора е и Н+ через двоеточие название акцептора через тире – название класса: донор: акцептор ( косубстрат) оксидоредуктаза

R-CH2-OH + НАД+ ↔ R-CH=О + НАДН2

Систематическое название: Алкоголь: НАД+ оксидоредуктаза

Тривиальное название: алкогольдегидрогеназа. Шифр: КФ 1.1.1.1
Пируват + НАДН2 ↔ лактат + НАД+

Систематическое название: Лактат: НАД+ оксидоредуктаза

Тривиальное название: ЛДГ. Шифр: КФ 1.1.2.7
2. Трансферазы

Ферменты этого класса принимают участие в переносе атомных групп, молекулярных остатков от одного соединения к другому. В реакцию вступают 2 вещества и 2 образуются: S-G + S’ ↔ S + S’-G.

В зависимости от переносимых групп трансферазы делятся на: 1). фосфотрансферазы (киназы); 2). аминотрансферазы; 3). гликозилтрансферазы; 4). метилтрансферазы; 5). ацилтрансферазы.

Систематическое название: откуда: куда в какое положение–что–трансфераза

или донор: акцептор–транспортируемая группа– трансфераза

АТФ + D-гексоза ↔ АДФ + D- гексоза-6ф

Систематическое название: АТФ: D-гексоза-6-фосфотрансфераза

Тривиальное название: гексокиназа
ФЕП + АДФ → ПВК + АТФ

Систематическое название: АТФ: ПВК-2-фосфотрансфераза

Тривиальное название: пируваткиназа
3. Гидролазы. Расщепляют ковалентную связь с присоединением молекулы воды.

В реакцию вступают 2 вещества и 2 образуются: S-G + Н2О ↔ S-ОН + G-Н.

В зависимости от характера гидролизуемой связи, различают подклассы: 1). гликозидазы – гидролиз гликозидов (лактоза – лактаза, мальтоза – мальтаза, сахароза – сахараза); 2). пептидазы – гидролиз пептидных связей; 3). эстеразы – разрыв связи в сложных эфирах.

Систематическое название субстрат–что отщепляется–гидролаза

или субстрат–гидролаза

Ацетилхолин + Н2О ↔ Ацетат + Холин

Систематическое название: Ацетилхолин-ацилгидролаза (Ацетилхолин-гидролаза)

Тривиальное название: Ацетилхолинэстераза
Глюкозо-6ф + Н2О → глюкоза + Н3РО4

Систематическое название: Глюкозо-6ф-фосфогидролаза

Тривиальное название: Глюкозо-6ф-фосфотаза


4. Лиазы

Отщепление групп от субстратов по негидролитическому механизму с образованием двойных связей (или наоборот, присоединение по двойной связи). Реакции обратимы, за исключением отщепления СО2.

В реакцию вступает 1 вещество и 2 образуются (или наоборот): -SХ-SY- ↔ XY + -S=S-

Систематическое название субстрат: что отщепляется–лиаза

L-малат ↔ фумарат + Н2О

Систематическое название: L-малат: гидролиаза

Тривиальное название: фумараза
5. Изомеразы

Взаимопревращения оптических, геометрических, позиционных изомеров. В реакцию вступает 1 вещество и 1 образуется. Исходя из типа катализируемой реакции изомеризации выделяется несколько подклассов: 1) рацемазы; 2) эпимеразы; 3) таутамеразы; 4) цис,- трансизомеразы; 5) мутазы (при внутримолекулярном переносе группы); 6) цикло-, оксоизомеразы.

Систематическое название субстратвид изомеризацииизомераза или субстратпродуктизомераза

Фумаровая к-та ↔ малеиновая к-та

Систематическое название: фумаратцис,трансизомераза
гл-6ф ↔ фр-6ф

Систематическое название: гл-6ффр-6физомераза
6. Лигазы (синтетазы)

Соединение 2 молекул с использованием энергии макроэргических соединений (АТФ и др). В реакцию вступают 3 вещества, образуется 3 вещества.

Систематическое название субстрат: субстратлигаза (источник энергии)

АТФ + L-глутамат + NH4+ → АДФ + Фн + L-глутамин

Систематическое название: L-глутамат: аммиаклигаза (АТФ → АДФ + Фн)

Тривиальное название: глутаминсинтетаза
АТФ + ПВК + СО2 → АДФ + Фн + ЩУК

Систематическое название: ПВК: СО2лигаза (АТФ → АДФ + Фн)

Тривиальное название: пируваткарбокилаза

ЛЕКЦИЯ № 2
  1   2   3

перейти в каталог файлов
связь с админом