Главная страница

Лекции+по+общей+биохимии+_1.+Ферменты_+ЛПФ+2013... 2013г лекция 1 Тема Введение в биохимию. Ферменты строение, свойства, локализация, номенклатура и классификация Биохимия


Скачать 0.52 Mb.
Название2013г лекция 1 Тема Введение в биохимию. Ферменты строение, свойства, локализация, номенклатура и классификация Биохимия
АнкорЛекции+по+общей+биохимии+_1.+Ферменты_+ЛПФ+2013.
Дата15.09.2017
Размер0.52 Mb.
Формат файлаdoc
Имя файлаЛекции+по+общей+биохимии+_1.+Ферменты_+ЛПФ+2013...doc
ТипЛекция
#21
страница2 из 3
Каталогlobzic1

С этим файлом связано 9 файл(ов). Среди них: Лекции+по+общей+биохимии+_2.БО_+ЛПФ+2013.doc, CtSuq9UbG_g.jpg, 5-0z3AAMDH0.jpg, a_bryzheechnaya_verkhnyaya.jpg, Otvety_na_ekzamenatsionnye_preparaty_shpargalka...doc, Golovnoy_mozg.png, Stroenie_mozga.png, Лекции+по+общей+биохимии+_1.+Ферменты_+ЛПФ+2013...doc.
Показать все связанные файлы
1   2   3
Тема: Регуляция активности ферментов в клетке.
Общие представления о гормонах и
их роли в регуляции активности ферментов.

Одним из важнейших свойств живых организмов является способность к поддержанию гомеостаза. Гомеостаз в организме поддерживается за счет регуляции скорости ферментативных реакций. Эта регуляция осуществляется:

I). Доступностью молекул субстрата и кофермента;

II). Изменением каталитической активности молекул фермента;

III). Изменением количества молекул фермента.

I. Доступность молекул субстратов обеспечивается контролируемой работой трансмембранных транспортных систем. Например, количество в мембране ГЛЮТов (трансмембранных переносчиков глюкозы) определяет скорость поступления глюкозы в цитоплазму клеток и скорость метаболических процессов, в которых она используется (гликолиз, ПФШ, гликогенез).

Доступность коферментов зависит от скорости их регенерации. В результате, чем больше концентрация исходного субстрата и регенерированных коферментов, тем выше скорость метаболического пути. Например, дефицит НАД+ лимитирует реакции ЦТК.
II. Регуляция каталитической активности ферментов. Бывает:

1). Неспецифическая регуляция. В связи с лабильностью всех ферментов, их каталитическая активность зависит от температуры, рН и давления.

2). Специфическая регуляция. Под действием специфических активаторов и ингибиторов изменяется активность регуляторных ферментов, которые контролируют интенсивность метаболических процессов в организме.

Механизмы специфической регуляции каталитической активности ферментов:

1). Аллостерическая регуляция;

2). Регуляция с помощью белок-белковых взаимодействий;

3). Регуляция через ковалентную модификацию.

а). Регуляция путем фосфорилирования/дефосфорилирования фермента;

б). Регуляция частичным протеолизом.

1). Аллостерическая регуляция каталитической активности ферментов

Аллостерическими ферментами называют ферменты, активность которых регулируется обратимым нековалентным присоединением модулятора (активатора и ингибитора) к аллостерическому центру. Ингибиторами аллостерических ферментов часто являются конечные продукты метаболических путей, активаторами – их начальные субстраты.

Активирование происходит по принципу прямой положительной связи, а ингибирование - по принципу отрицательной обратной связи.



Аллостерические ферменты играют важную роль в регуляции т.к. чрезвычайно быстро реагируют на изменения среды.

Например, конечный продукт катаболизма глюкозы АТФ ингибирует аллостерически ферменты гликолиза фосфофруктокиназу и пируваткиназу. Накапливаемая в гликолизе фруктоза-1,6-ф активирует пируваткиназу, что ускоряет реакции гликолиза.

2). Регуляция каталитической активности ферментов с помощью белок-белковых взаимодействий. Выделяют 2 механизма:

а). Активация ферментов в результате присоединения регуляторных белков. Например, аденилатциклаза (Ац), которая катализирует превращение АТФ в цАМФ, активируется присоединением α-субъединицы G-белка. Этот механизм регуляции обратим.

б). Регуляция каталитической активности ферментов ассоциацией/диссоциацией протомеров. Например, протеинкиназа А, активируется при диссоциации ее тетрамера на 4 субъединицы и инактивируется при обратном соединении 4 субъединиц в тетрамер.

3). Регуляция каталитической активности ферментов путем их ковалентной модификации. Регуляция активности фермента осуществляется в результате ковалентного присоединения или отщепления от него фрагмента. Она бывает 2 видов:

а). путем фосфорилирования и дефосфорилирования ферментов;

б). путем их частичного протеолиза.

а). Регуляция каталитической активности ферментов путем их фосфорилирования и дефосфорилирования. Фосфорилирование осуществляется протеинкиназами (ПК) по ОН-группе серина, треонина или тирозина регуляторный белков и ферментов. Дефосфорилирование в этих же положениях осуществляется фосфопротеинфосфатазами (ФПФ).

Введение отрицательно заряженной фосфорной группы приводит к обратимому изменению конформации и активности фермента.



Например, под действием глюкагона и адреналина в клетках печени происходит фосфорилирование ключевых ферментов гликогенеза (гликогенсинтаза) и гликогенолиза (гликогенфосфорилаза), при этом распад гликогена активируется, а синтез ингибируется.

Инсулин наоборот вызывает в клетках печени дефосфорилирование тех же ключевых ферментов, в результате синтез гликогена активируется, а распад ингибируется.

б). Регуляция каталитической активности ферментов путем их частичного протеолиза. При участии активаторов и протеолитических ферментов происходит отщепление части молекулы фермента и его необратимая активация. Такой фермент функционирует короткий период, а затем разрушается. Подобная схема активации характерна для внеклеточных ферментов ЖКТ (пепсин, трипсин, химотрипсин и др.) и ферментов свертывающей и противосвертывающей системы крови (тромбин, фибрин, плазмин др.). Например, трипсиноген, синтезируемый в поджелудочной железе, поступает в двенадцатиперстную кишку, где энтеропептидаза кишечника отщепляет у него с N-конца гексапептид. В результате в оставшейся части молекулы фермента формируется активный центр.



III. Механизмы регуляции количества ферментов

Количество ферментов в клетке зависит от скорости их синтеза и распада.

Синтез ферментов регулируется индукторами и репрессорами. В качестве индукторов и репрессоров выступают некоторые метаболиты, гормоны и биологически активные вещества.

Индукторы, это вещества которые запускают синтез ферментов. Процесс запуска синтеза ферментов называется индукцией.

Например, у бактерий ферменты синтезируются только при наличии для них субстратов, которые являются для этих ферментов индукторами (у E. coli лактоза индуктор β-галактозидазы).

Не все ферменты чувствительны к индукторам. Ферменты, концентрация, которых зависит от добавления индукторов, называются индуцируемыми ферментами (органоспецифические ферменты). Ферменты, концентрация которых постоянна и не регулируется индукторами, называются конститутивными ферментами (ферменты гликолиза, синтеза РНК и т.д.).

Для индуцируемых ферментов выделяют понятие базовый уровень, это концентрация фермента при отсутствии индуктора. При индукции базовый уровень фермента может быть превышен от 2 до 1000 раз.

Репрессорами (точнее корепрессорами) называют вещества, которые останавливают синтез ферментов. Процесс остановки синтеза ферментов называется репрессией.

Дерепрессией – называется процесс возобновления синтеза ферментов после удаления из среды репрессора или истощения его запасов.

Часто один индуктор или репрессор регулируют синтез сразу нескольких ферментов участвующих в одном метаболическом пути. Гены этих ферментов собраны в оперон.

Оперон – участок молекулы ДНК, который содержит информацию о группе функционально взаимосвязанных структурных генов и регуляторную зону, промотор, контролирующую транскрипцию этих генов. Индукция и репрессия синтеза ферментов оперона называется координированной.

Координированная индукция – все ферменты, кодируемые генами оперона, индуцируются одним индуктором.

Координированная репрессия – остановка синтеза ферментов оперона одним репрессором.

В промоторе оперона имеется участок оператор, необходимый для присоединения репрессора. Репрессор синтезируется с гена-регулятора.

1). Индукция оперона. Репрессор присоединяется к оператору и препятствует присоединению к промотору РНК-полимеразы – транскрипции мРНК нет. Индуктор, присоединяясь к репрессору, вызывает отделение последнего от оператора, РНК-полимераза присоединяется к промотору и начинается транскрипция мРНК с оперона. С этой мРНК синтезируются сразу несколько ферментов.

рисунок

2). Репрессия оперона. Репрессор не присоединяется к оператору самостоятельно. Присоединение к оператору репрессора происходит только в комплексе с корепрессором. Комплекс репрессор-корепрессор присоединяясь к оператору, препятствует присоединению РНК-полимеразы к промотору, что блокирует транскрипцию мРНК с оперона и синтез ферментов.

рисунок

Катаболическая репрессия – более выгодный субстрат окисления ингибирует ферменты окисления менее выгодного субстрата.
Распад ферментов идет под действием гидролитических ферментов. Они активно атакуют ферменты, структура которых подверглась модификации (например, денатурации) под действием различных неблагоприятных факторов.
Клеточная сигнализация

В многоклеточных организмах поддержание гомеостаза обеспечивают 3 системы:

1). нервная, 2). гуморальная, 3). иммунная.

Регуляторные системы функционируют с участием сигнальных молекул.

Сигнальные молекулы – это органические вещества, которые переносят информацию.

К сигнальным молекулам относятся гормоны, нейромедиаторы, факторы роста, цитокины и эйкозаноиды.

ЦНС для передачи сигнала использует нейромедиаторы, гуморальная система – гормоны, иммунная - цитокины.

Гормоны, это сигнальные молекулы беспроводного системного действия.

Отличием истинных гормонов от других сигнальных молекул, является то, что они синтезируются в специализированных эндокринных клетках, транспортируются кровью и действуют дистантно на ткани мишени.

Гормоны по строению делятся: на

белковые (гормоны гипоталамуса, гипофиза),

производные аминокислот (тиреоидные, катехоламины)

и стероидные (половые, кортикоиды).

Пептидные гормоны и катехоламины растворимы в воде, они регулируют преимущественно каталитическую активность ферментов.

Стероидные и тиреоидные гормоны водонерастворимы, они регулируют преимущественно количество ферментов.

Гормоны влияют на активность и количество ферментов в клетке не напрямую, а через каскадные системы (аденилатциклазную, гуанилатциклазную, инозитолтрифосфатную, RAS и т.д.), состоящие из:

  1. рецепторов;

  2. регуляторных белков (G-белки, IRS, Shc, STAT и т.д.).

  3. вторичных посредников, (messenger - посыльный) (Са2+, цАМФ, цГМФ, ДАГ, ИТФ);

  4. ферментов (аденилатциклаза, фосфолипаза С, фосфодиэстераза, протеинкиназы А, С, G, фосфопротеинфосфотаза);

Необходимость каскадных систем связана с тем, что, во-первых, водорастворимые гормоны не проходят клеточную мембрану, во-вторых, эти системы обеспечивают усиление первичного сигнала гормонов в миллионы раз. В результате даже одна молекула гормона способна активировать миллионы ферментов и вызвать метаболический эффект.

Водонерастворимые гормоны самостоятельно проходят клеточные мембраны и реализуют свой эффект с участием цитоплазматических и ядерных рецепторов.
Рецепторы

Рецепторы - это белки, встроенные в клеточную мембрану или находящиеся внутри клетки, которые, взаимодействуя с сигнальными молекулами, меняют активность регуляторных белков.

По локализации рецепторы делятся на: 1) цитоплазматические; 2) ядерные; 3) мембранные.

По эффекту рецепторы делятся на: активаторные (активируют каскадные системы) и ингибиторные (блокируют каскадные системы).

Участие рецепторов в трансмембранной передаче сигнала



вторичные

посредники:


1). Рецепторы, связанные с ионными каналами (рецептор ГАМК);

2). Рецепторы, с тирозинкиназной активностью (рецептор инсулина);

3). Рецепторы, активирующие инозитолтрифосфатную систему (α1-адренорецептор - у гепатоцитов);

4). Рецепторы, с гуанилатциклазной активностью (гуанилатциклаза, рецептор ПНФ);

5). Рецепторы, активирующие аденилатциклазную систему (β-адренорецепторы);

6). Рецепторы, связывающие гормон в цитозоле или ядре (рецептор кортизола).
По механизму передачи сигнала рецепторы делятся на 4 типа:

1). Рецепторы, связанные с ионными каналами. Это интегральные мембранные белки, состоящие из нескольких субъединиц, полипептидная цепь которых несколько раз пересекает клеточную мембрану. Они имеют центр связывания сигнальной молекулы и ионный канал. При связывании с сигнальными молекулами у этих рецепторов открываются или закрываются ионные каналы. Действуют они очень быстро в течение миллисекунд.

Эти рецепторы обеспечиваю синаптическую передачу в электрически возбудимых клетках. Например, катионные ацетилхолиновые никотиновые рецепторы скелетных мышц.
2). Рецепторы, с ферментативной активностью. Имеют разнообразное строение, регулируют клеточное деление, дифференцировку, развитие иммунного ответа.

Рецепторы с ферментативной активностью бывают 3 видов:

а). Рецепторы, с тирозинкиназной активностью (тирозиновые протеинкиназы). Это каталитические рецепторы, фосфорилирующие по тирозину белки-мишени. Их активируют инсулин, макрофагный колониестимулирующий фактор, тромбоцитарный производный фактор роста.



Например, мембранный рецептор инсулина, он является гликопротеином, который состоит из 2 α и 2 β субъединиц связанных дисульфидными связями. α субъединицы связывают инсулин, а β субъединицы обладают тирозинкиназной активностью. После присоединения гормона к α субъединицам, β субъединицы сначала фосфорилируют друг друга, а затем белок IRS-1 (insulin receptor substrate), который активирует функциональные ферменты (фосфопротеинфосфатаза). ФПФ в свою очередь дефосфорилирует и инактивирует инсулиновый рецептор.

б). Рецепторы, с фосфатазной активностью (тирозиновые протеинфосфотазы). Это каталитические рецепторы, дефосфорилирующие по тирозину белки-мишени (например, ФПФ).

в). Рецепторы с гуанилатциклазной активностью (гуанилатциклазы ГЦ).Это каталитические рецепторы, превращающие ГТФ в цГМФ, есть в сердце, легких, почках, надпочечниках, эндотелии кишечника, сетчатке и т.д.

Эти рецепторы находятся на мембране и в цитоплазме:

Мембранная ГЦ– гликопротеин (180кДа), имеет 3 домена: внеклеточный рецепорный, трансмембранный и внутриклеточный каталитический. Активируется предсердным натрийуретическим фактором (АНФ), термостабильным токсином грамотрицательных бактерий, эндотелийпроизводным фактором, ацетилхолином+Са2+, серотонином, гистамином и т.д. Существует 3 вида.

Цитоплазматическая ГЦ состоит из α и β субъединиц и содержит гем, активируется оксидом азота NO (а также Н2О2, О2, жирными кислотами и продуктами ПОЛ).
3). Рецепторы, сопряженные с G-белками (GPCR от англ. G – protein coupled receptor), по строению их еще называют серпантинными.

Это мономерные интегральные мембранные белки, полипептидная цепь которых 7 раз пронизывает клеточную мембрану. Внеклеточный домен GPCR обеспечивает взаимодействие с гормоном, а внутриклеточный - контакт с G-белками.

В настоящее время открыто более 200 видов GPCR.

К GPCR относятся: α и β рецепторы.

К GPCR присоединяются:

адреналин (рецепторы α1 и α2, β1 и β2), ацетилхолин (рецепторы М1, М2, М3, М4),

серотонин (1А, 1В, 1С, 2),

дофамин (Д1 и Д2),

АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, простагландины, гастрин, холецистокинин, нейропептид Y, нейромедин К, вазопрессин, ангиотензин, вещество К, вещество Р, или нейрокинин 1, 2 и 3 типа, тромбин, интерлейкин-8, глюкагон, кальцитонин, секретин, соматолиберин, ВИП, гипофизарный аденилатциклазактивирующий пептид, глютамат (MG1 – MG7), аденин.





GPCR через G-белки активируют аденилатциклазную и инозитолтрифосфатную системы. GPCR инактивируются:

  1. путем ухода сигнальной молекулы из активного центра рецептора;

  2. путем фосфорилирования рецепторов протеинкиназами и последующего присоединения специального белка (например, β-аррестин);

GPCR участвуют почти во всех жизненно важных процессах, протекающих в организме: они поддерживают работу сердца, органов пищеварения и дыхания, мозговую деятельность.

Примерно половина современных лекарств взаимодействуют с GPCR.
4). Ядерные и цитоплазматические рецепторы. Находятся в цитоплазме или ядре, при взаимодействии с гормоном, образуют комплекс, который присоединяется к регуляторной нуклеотидной последовательности в ДНК, изменяет доступность промотора для РНК-полимеразы, соответственно меняет скорость транскрипции мРНК и трансляции новых ферментов.

Ядерные и цитоплазматические рецепторы содержат ДНК-связывающий домен, характеризующийся наличием двух структур «цинковых пальцев». Особенностью цитоплазматических рецепторов является связь с белком-шапероном, который стабилизирует их структуру.
Разные клетки организма, в зависимости от функций, имеют определенный набор рецепторов. На мембране одной клетки может быть более десятка разных типов рецепторов.
Регуляторные белки

G-белки - универсальные посредники, передающие сигнал от рецепторов к ферментам клеточных мембран.

В настоящее время известно более 50 G-белков:

  • Gs-белок активирует аденилатциклазу. Масса 80000-90000Да.

  • Gi-белок ингибирует аденилатциклазу. Масса 80000-90000Да. Через рецептор, активируется соматостатином.

  • Gq-белок активирует фосфолипазу С.

  • G-белки влияют на активность фосфодиэстеразы, фосфолипазы А2, некоторые типы Са2+- и K+-каналов.

  • G-белки также обеспечивают передачу сигнала в сенсорных клетках (фоторецепторных, обонятельных и вкусовых): Свет → родопсин → Gt → ФДЭцГМФ → (цГМФ→ГМФ)


G-белки олигомеры, состоят из 3 субъединиц α, β, γ.

β-субъединицы (35000 Да) у Gs- и Gi-белков одинаковы.

α- субъединицы (41000 Да у Gi, 45000 Да у Gs) кодируются разными генами и обеспечивают специфический ответ (“+” или “-”).



1). Гормон (Г), взаимодействуя с рецептором (R), изменяет его конформацию.

2). Гормон-рецепторный комплекс, взаимодействуя с G-белком, уменьшает у α-субъединицы (α) сродство к ГДФ и увеличивает сродство к ГТФ.

3). Присоединение ГТФ к α-субъединице (в присутствии Mg2+) вызывает в G-белке изменение конформации и диссоциацию его на субъединицы: α-субъединицу (α-ГТФ) и димер βγ.

α-ГТФ имеет высокое сродство к аденилатциклазе (Ац), его присоединение приводит к активации последней.

4). α-субъединица катализирует распад ГТФ до ГДФ + Фн. α-ГДФ имеет низкое сродство к Ац и высокое к димеру βγ. Отделение α-ГДФ от Ац инактивирует последнюю.


STAT белки.

Вторичные посредники (мессенджеры)

Мессенджеры – низкомолекулярные вещества, переносящие сигналы гормонов внутри клетки. Они обладают высокой скоростью перемещения, расщепления или удаления (Са2+, цАМФ, цГМФ, ДАГ, ИТФ).

Нарушения обмена мессенджеров приводят к тяжелым последствиям. Например, форболовые эфиры, которые являются аналогами ДАГ, но в отличие от которого в организме не расщепляются, способствуют развитию злокачественных опухолей.
цАМФ открыта Сазерлендом в 50 годах прошлого века. За это открытие он получил Нобелевскую премию. цАМФ участвует в мобилизации энергетических запасов (распад углеводов в печени или триглицеридов в жировых клетках), в задержке воды почками, в нормализации кальциевого обмена, в увеличении силы и частоты сердечных сокращений, в образовании стероидных гормонов, в расслаблении гладких мышц и так далее.

цГМФ активирует ПК G, ФДЭ, Са2+-АТФазы, закрывает Са2+-каналы и снижает уровень Са2+ в цитоплазме.


Ферменты

Ферменты каскадных систем катализируют:

  • образование вторичных посредников гормонального сигнала;

  • активацию и ингибирование других ферментов;

  • превращение субстратов в продукты;


Аденилатциклаза (АЦ)

Гликопротеин с массой от 120 до 150 кДа, имеет 8 изоформ, ключевой фермент аденилатциклазной системы, с Mg2+ катализирует образование вторичного посредника цАМФ из АТФ.

АЦ содержит 2 –SH группы, одна для взаимодействия с G-белком, другая для катализа. АЦ содержит несколько аллостерических центров: для Mg2+, Mn2+, Ca2+, аденозина и форсколина.

Есть во всех клетках, располагается на внутренней стороне клеточной мембраны. Активность АЦ контролируется: 1) внеклеточными регуляторами - гормонами, эйкозаноидами, биогенными аминами через G-белки; 2) внутриклеточным регулятором Са2+ (4 Са2+-зависимые изоформы АЦ активируются Са2+).
Протеинкиназа А (ПК А)

ПК А есть во всех клетках, катализируют реакцию фосфорилирования ОН- групп серина и треонина регуляторных белков и ферментов, участвует в аденилатциклазной системе, стимулируется цАМФ. ПК А состоит из 4 субъединиц: 2 регуляторных R (масса 38000 Да) и 2 каталитических С (масса 49000 Да). Регуляторные субъединицы имеют по 2 участка связывания цАМФ. Тетрамер не обладает каталитической активностью. Присоединение 4 цАМФ к 2 субъединицам R приводит к изменению их конформации и диссоциации тетрамера. При этом высвобождаются 2 активные каталитические субъединицы С, которые катализируют реакцию фосфорилирования регуляторных белков и ферментов, что изменяет их активность.



Протеинкиназа С (ПК С)

ПК С участвует в инозитолтрифосфатной системе, стимулируется Са2+, ДАГ и фосфатидилсерином. Имеет регуляторный и каталитический домен. ПК С катализирует реакцию фосфорилирования белков-ферментов.

Протеинкиназа G (ПК G) есть только в легких, мозжечке, гладких мышцах и тромбоцитах, участвует в гуанилатциклазной системе. ПК G содержит 2 субъединицы, стимулируется цГМФ, катализирует реакцию фосфорилирования белков-ферментов.

Фосфолипаза С (ФЛ С)

Гидролизует фосфоэфирную связь в фосфатидилинозитолах с образованием ДАГ и ИФ3, имеет 10 изоформ. ФЛ С регулируется через G-белки и активируется Са2+.

Фосфодиэстеразы (ФДЭ)

ФДЭ превращает цАМФ и цГМФ в АМФ и ГМФ, инактивируя аденилатциклазную и гуанилатциклазную систему. ФДЭ активируется Са2+, 4Са2+-кальмодулином, цГМФ.

NO-синтаза – это сложный фермент, представляющий собой димер, к каждой из субъединиц которого присоединено несколько кофакторов. NO-синтаза имеет изоформы.



Синтезировать и выделять NO способно большинство клеток организма человека и животных, однако наиболее изучены три клеточные популяции: эндотелий кровеносных сосудов, нейроны и макрофаги. По типу синтезирующей ткани NO-синтаза имеет 3 основные изоформы: нейрональную, макрофагальную и эндотелиальную (обозначаются соответственно как NO-синтаза I, II и III).

Нейрональная и эндотелиальная изоформы NO-синтазы постоянно присутствуют в клетках в небольших количествах, и синтезируют NO в физиологических концентрациях. Их активирует комплекс кальмодулин-4Са2+.

NO-синтаза II в макрофагах в норме отсутствует. При воздействии на макрофаги липополисахаридов микробного происхождения или цитокинов они синтезируют огромное количество NO-синтазы II (в 100-1000 раз больше чем NO-синтазы I и III), которая производит NO в токсических концентрациях. Глюкокортикоиды (гидрокортизон, кортизол), известные своей противовоспалительной активностью, ингибируют экспрессию NO-синтазы в клетках.

Действие NO

NO - низкомолекулярный газ, легко проникает через клеточные мембраны и компоненты межклеточного вещества, обладает высокой реакционной способностью, время его полураспада в среднем не более 5 с, расстояние возможной диффузии небольшое, в среднем 30 мкм.
В физиологических концентрациях NO оказывает мощное сосудорасширяющее действие:

  • Эндотелий постоянно продуцирует небольшие количества NO.

  • При различных воздействиях – механических (например, при усилении тока или пульсации крови), химических (липополисахариды бактерий, цитокины лимфоцитов и кровяных пластинок и т.д.) – синтез NO в эндотелиальных клетках значительно повышается.

  • NO из эндотелия диффундирует к соседним гладкомышечным клеткам стенки сосуда, активирует в них гуанилатциклазу, которая синтезирует через 5с цГМФ.

  • цГМФ приводит к снижению уровня ионов кальция в цитозоле клеток и ослаблению связи между миозином и актином, что и позволяет клеткам через 10 с расслабляться.

На этом принципе действует препарат нитроглицерин. При расщеплении нитроглицерина образуется NO, приводящий к расширению сосудов сердца и снимающий в результате этого чувство боли.

NO регулирует просвет мозговых сосудов. Активация нейронов какой-либо области мозга приводит к возбуждению нейронов, содержащих NO-синтазу, и/или астроцитов, в которых также может индуцироваться синтез NO, и выделяющийся из клеток газ приводит к локальному расширению сосудов в области возбуждения.

NO участвует в развитии септического шока, когда большое количество микроорганизмов, циркулирующих в крови, резко активируют синтез NO в эндотелии, что приводит к длительному и сильному расширению мелких кровеносных сосудов и как следствие – значительному снижению артериального давления, с трудом поддающемуся терапевтическому воздействию.

В физиологических концентрациях NO улучшает реологические свойства крови:

NO, образующийся в эндотелии, препятствует прилипанию лейкоцитов и кровяных пластинок к эндотелию и также снижает агрегацию последних.

NO может выступать в роли антиростового фактора, препятствующего пролиферации гладкомышечных клеток стенки сосудов, важного звена в патогенезе атеросклероза.
В больших концентрациях NO оказывает на клетки (бактериальные, раковые и т.д) цитостатическое и цитолитическое действие следующим образом:

  • при взаимодействии NO с радикальным супероксид анионом образуется пероксинитрит (ONOO-), который является сильным токсичным окислителем;

  • NO прочно связывается с геминовой группой железосодержащих ферментов и ингибирует их (ингибирование митохондриальных ферментов окислительного фосфорилирования блокирует синтез АТФ, ингибирование ферментов репликации ДНК способствуют накоплению в ДНК повреждений).

  • NO и пероксинитрит могут непосредственно повреждать ДНК, это приводит к активации защитных механизмов, в частности стимуляции фермента поли(АДФ-рибоза) синтетазы, что еще больше снижает уровень АТФ и может приводить к клеточной гибели (через апоптоз).


Трансмембранная передача информации

с участием аденилатциклазной системы



Последовательность событий, приводящих к каталитической активации ферментов

1). 1 Гормон (Г) присоединяется к Rs-рецептору с образованием гормон-рецепторного комплекса, который через несколько Gs-белков активирует несколько аденилатциклаз (комплекс гормон-Ri-рецептор через Gi-белки ингибирует аденилатциклазы);

2). 1 Аденилатциклаза превращает тысячи АТФ в тысячи цАМФ;

3). 4 цАМФ обратимо присоединяясь к 2 рецепторным субъединицам R ПК А, вызывают диссоциацию протомеров ПК А с освобождением 2 активных каталитических субъединиц С и двух 2цАМФ-R;

4). 1 Субъединица С ПК А фосфорилирует сотни ферментов или регуляторных белков, что способствует их активации или ингибированию. Таким образом, сигнал 1 гормона в аденилатциклазной системе суммарно усиливается в 106-107 раз;

5). Миллионы активных ферментов превращают молекулы субстрата в продукты.

Инактивация аденилатциклазной системы осуществляется через ФДЭ и ФПФ. ФДЭ разрушает цАМФ до АМФ, это приводит к самосборке субъединиц ПК А и ее инактивации. ФПФ инактивирует (активирует) фермент в реакции гидролитического дефосфорилирования.
Посредством стимуляции аденилатциклазной системы оказывают гормональное действие кортиколиберин, кальцитонин, соматолиберин, ВИП, глюкагон, вазопрессин (через V2 рецепторы), ЛГ, ФСГ, ТТГ, хорионический гонадотропин, АКТГ, паратгормон, простагландины типа Е, D и I, адренергические катехоламины (через α2, β1и β 2 рецепторы).
Аденилатциклазная система активируется:

Гормон

Рецептор

Локализация

Эффект

адренергические

катехоламины

α2

адипоциты





























Угнетают аденилатциклазную систему гормоны: (через Gs-белки соматостатин), ангиотензин II, ацетилхолин (мускариновый эффект), дофамин, опиоиды и a2-адренергические катехоламины.
Трансмембранная передача информации с участием инозитолтрифосфатной системы


субстрат

продукт


Последовательность событий, приводящих к каталитической активации ферментов

1). Гормон (Г) присоединяется к R-рецептору с образованием гормон-рецепторного комплекса, который через G-белок активирует фосфолипазу С;

2). Фосфолипаза С расщепляет фосфатидилинозитол-4,5-дифосфат (ФИФ2) клеточной мембраны на инозитолтрифосфат (ИТФ) и диацилглицерин (ДАГ);

3). ИФ3 присоединяясь к рецептору на мембране ЭПР, открывает кальциевые каналы, выпуская Са2+ из ЭПР в цитоплазму;

4). Са2+, ДАГ и фосфотидилсерин активируют ПК С, которая превращает субстрат в продукт.

5). 4 Са2+ присоединяются к кальмодулину, способствуя присоединению кальмодулина к ферменту и образованию активного комплекса 4Са2+-кальмодулин-фермент, который превращает субстрат в продукт.

Инактивация инозитолтрифосфатной системы осуществляется кальциевыми насосами, которые откачивают Са2+ из цитоплазмы.
Посредством стимуляции инозитолтрифосфатной системы оказывают гормональное действие гонадолиберин, тиролиберин, дофамин, тромбоксаны А2, эндоперекиси, лейкотриены, агниотензин II, эндотелин, паратгормон, нейропептид Y, адренергические катехоламины (через α1 рецепторы), ацетилхолин, брадикинин, вазопрессин (через V1 рецепторы).
Инозитолтрифосфатная система активируется:

Гормон

Рецептор

Локализация

Эффект

адренергические

катехоламины

α1

гепатоциты




























Трансмембранная передача информации

с участием гуанилатциклазной системы



Последовательность событий, приводящих к каталитической активации ферментов

1).
Гуанилатциклазная система функционирует в легких, почках, кишечнике, сердце, надпочечниках, эндотелии кишечника, сетчатке и др. Она участвует в регуляции водно-солевого обмена и тонуса сосудов, вызывает релаксацию и т.д.
Ацетилхолин и гистамин → эндотелии сосудов → оксида азота → ГМК сосудов → цГМФ → расслабление гладких мышц сосудов.
Увеличение давления крови → предсердие → АНФ → почки → цГМФ → усиление секреции Na+ и H2O → усиление выведения из организма Na+ и H2O → снижение давления крови
Увеличение давления крови → предсердие → АНФ → ГМК сосудов → цГМФ → расслабление гладких мышц сосудов → снижение давления крови
Грамотрицательные бактерии → термостабильный токсин → эндотелий кишечника → цГМФ → торможение всасывания воды в кишечнике → диарея
Через образование оксида азота реализует свое действие ряд очень эффективных средств для лечения стенокардии (нитраты) и корректоров эректильной дисфункции (например, известный препарат Виагра).

Трансмембранная передача информации с участием

цитоплазматических и ядерных рецепторов



Через цитоплазматические и ядерные рецепторы действуют кортикоиды, половые и тиреоидные гормоны.

Последовательность событий, приводящих к активации транскрипции и биосинтезу ферментов:

1). Освобождаясь от белка, гормон самостоятельно проходит клеточную мембрану и в цитоплазме присоединяется к цитоплазматическому рецептору с образованием гормон-рецепторного комплекса;

2). Гормон-рецепторный комплекс мигрирует в ядро, где присоединяется к регуляторной нуклеотидной последовательности в ДНК – энхансером или сайленсером.

3). При взаимодействии с энхансером увеличивается, а с сайленсером уменьшается доступность промотора для РНК-полимеразы, соответственно меняется скорость транскрипции мРНК и трансляции новых ферментов;

4). Ферменты превращают субстраты в продукты.

Иногда, гормон самостоятельно проникает в ядро, где соединяется с ядерным рецептором, образуя гормон-рецепторный комплекс. Этот комплекс также присоединяется к ДНК, запускает или блокирует процесс транскрипции мРНК и трансляции новых ферментов.

Изменение количества ферментов и интенсивности метаболизма под действием стероидных и териоидных гормонов происходит в течение нескольких часов.
Литература

  1. Филиппов П.П. «Как внешние сигналы передаются внутрь клетки». Соросовский образовательный журнал, № 3, 1998, с 28-34.



ЛЕКЦИЯ № 3
1   2   3

перейти в каталог файлов
связь с админом