Главная страница

Аминокислоты строительный материал жизни


Скачать 206.5 Kb.
НазваниеАминокислоты строительный материал жизни
АнкорAminokisloty.doc
Дата12.02.2018
Размер206.5 Kb.
Формат файлаdoc
Имя файлаAminokisloty.doc
ТипДокументы
#37186
страница1 из 6
Каталогb_0_s

С этим файлом связано 63 файл(ов). Среди них: Aminokisloty.doc, Irina_Pigulevskay_-_vse_chto_nuzno_znat_o_svoih_analizah.pdf, 250x216.gif, 500x280.gif, 10.gif, 350x350.gif, 2688f4765658a5113fd92a16f343ccbc.gif, 12c4938289e9cfbfd8208865ed808103.gif, 420x324.gif и ещё 53 файл(а).
Показать все связанные файлы
  1   2   3   4   5   6

Аминокислоты - строительный материал жизни



Леонид Остапенко,

член Международной Ассоциации Спортивных Наук
Едва ли в нынешнее просвещенное время найдется такой спортсмен-профессионал или даже непрофессионально занимающийся спортом человек (опытный или начинающий), такой тренер или такой владелец тренажерного зала, который бы не брался рассуждать об аминокислотах или белковых препаратах. И это при ситуации, когда наша спортивная пресса достаточно скупо рассказывает в популярной форме о том, что же такое пищевые добавки и продукты повышенной биологической ценности, к которым относятся и аминокислоты. Не претендуя на исчерпывающий характер данного обзора, мы все же попытаемся восполнить этот дефицит, и изложим некоторые сведения, благодаря которым надеемся дать вам путеводитель к тому, как лучше ориентироваться в мире аминокислот хотя бы на уровне простого потребителя. Как для атлета-профессионала, так и для обычного занимающегося оздоровительной физкультурой человека безусловно нужными были бы знания того, что потребление аминокислот должно быть сбалансированным и подчиненным определенным практическим нуждам - наращиванию мышечной массы и силы, сбросу избыточных жировых отложений или решению еще более специфических задач. Разрабатывая этот материал для пользователей этим классом пищевых добавок, мы ставили перед собой цель как опровергнуть слухи о вредности некоторых аминокислот, так и развеять мифы относительно "магической силы" отдельных из них.

Немного биохимии

Живой организм (мы будем вести далее речь лишь об организме человека) - макромолекулярная система, осуществляющая обмен веществ, энергии и самовоспроизведение. Минимальная структурная единица этой системы - клетка, в которой обнаружены шесть обязательных надмолекулярных образований или органелл (субклеточных - с позиций морфологии и надмолекулярных - с позиций химии):

  • мембрана, отграничивающая клетку от окружения и разделяющая ее внутреннее пространство на функционально различающиеся отсеки, где происходят разнообразные биохимические процессы;

  • митохондрии - образования, высвобождающие и запасающие энергию химических связей; это так называемые "энергетические станции" клеток;

  • ядро, где локализованы молекулы-носители генетической информации; именно здесь записана информация о том, какого спортивного "потолка" вы можете достигнуть;

  • рибосомы, где генетическая информация реализуется путем синтеза биологически активных молекул в согласии с "инструкцией", доставляемой сюда из ядра;

  • лизосомы, переваривающие сложные питательные вещества и посторонние частицы;

  • аппарат Гольджи, участвующий в биогенезе мембран и лизосом, в синтезе гликолипидов и фосфолипидов.

Благодаря разработке методов выделения субклеточных структур стало возможным изучение их химического состава. Оказалось, что все многообразие молекул, обнаруживаемых в этих частицах из разных по происхождению клеток, можно свести к небольшому числу классов:
  1. макромолекулы (белки, углеводы, липиды);

  2. низкомолекулярные биологически активные органические соединения;

  3. минеральные вещества.



Живой организм осуществляет следующие функции:

    1. Извлечение из внешней среды и превращение в приемлемые для организма формы химических соединений - материала для возобновления структур. Эта функция реализуется через прием пищевых продуктов, воды, и через дыхание.

    2. Химическое преобразование оказавшихся во внутренней среде соединений (расщепление и синтез, трансформация) и выведение во внешнюю среду продуктов, которые более не используются (конечные продукты).

    3. Высвобождение энергии, заключенной в поступающих извне соединениях, ее запасание в приемлемой для организма форме и использование в процессах жизнедеятельности.

Реализуются эти функции в общем виде следующим образом:

  1. Источниками материалов для возобновления структур и энергообеспечения служат пищевые продукты, в составе которых организм получает углеводы (карбогидраты), липиды (жиры), белки (протеины), некоторые биологически активные соединения (например, витамины) и минеральные вещества. Белки, углеводы и липиды в усваиваемые формы преобразуются в пищеварительном тракте при участии активных компонентов, которые выделяются соответствующими железами желудка, кишечника, поджелудочной железы и поступают с желчью. Преобразование макромолекул заключается в их деполимеризации, т.е. в разрушении полимеров до мономеров (белков - до аминокислот, углеводов - до простых сахаров, липидов - до свободных жирных кислот и глицерола). Низкомолекулярные биологически активные и минеральные вещества всасываются во внутреннюю среду преимущественно без какой-либо предварительной химической трансформации.

  2. Химические соединения с током крови поступают в органы (ткани), где включаются в процессы синтеза (образование специфических для тканей организма человека белков, углеводов, липидов и регуляторных соединений), процессы окислительно-восстановительного распада, в ходе которого высвобождается энергия химических связей. Промежуточные продукты используются в синтезе биологически активных веществ или выполняют регуляторные функции.

  3. Высвобождение энергии в ходе окислительно-восстановительного распада сопряжено с ее запасанием в форме универсальных носителей. Они используются как источники энергии для выполнения всех видов работы, свойственных живому. Все перечисленные процессы протекают в организме повсеместно, однако можно отметить и локализацию их в отдельных органах и тканях.

Далее нам придется детальнее познакомиться с понятием биомолекулы.

Биомолекулы - обязательные компоненты живых организмов, создающие их характерные свойства - способность к обмену веществ и энергии, самовоспроизведению. Они выступают в качестве субстратов этих процессов или факторов, обеспечивающих их осуществление и (или) регуляцию. Вот их типы:

Нутриенты:

- Белки

- Липиды

- Углеводы

- Витамины

Регуляторы:

- Витамины

- Гормоны
Первые четыре типа биомолекул объединены понятием "нутриенты" - пищевые вещества, к их числу относятся также и минеральные соединения. Гормоны, выполняющие в организме регуляторную роль, в отличие от нутриентов образуются в специализированных органах - эндокринных железах. Витамины - по происхождению нутриенты, по функции - регуляторные соединения.

Остановимся немного на белках, так как именно белки (полипептиды) - это длинные протеиновые цепи, которые соединены отдельными звеньями - аминокислотами. Не напрасно аминокислоты называют строительными блоками организма! Большинство белков человеческого организма находятся в постоянном процессе синтеза и распада. Неизменный состав белка является выражением динамического равновесия. Каждая клетка нашего организма содержит очень много белка, который является "строительным материалом" для стенок клеток, мышц и волокон. Известно, что в организме человека в день синтезируется от 400 до 800 граммов белка, но только около 20 граммов из них представляет собой белок сократительных элементов мышечных тканей. Приблизительно через 8 дней весь протеин в организме обновляется. У клеток мозга, печени, почечных тканей время этого обновления - 10 дней. Конечным продуктом аминокислотного обмена выступает азот. Азотистый баланс организма соответствует темпам синтеза и распада. Негативный азотистый баланс сигнализирует, что разрушение белка в организме превалирует.

Интересно узнать, что многие тысячи различных видов белков, встречающиеся во всех живых земных организмах - растениях, животных, людях - состоят всего лишь из 20 аминокислот.

Всего же биохимикам известно около 200 различных природных аминокислот, а упомянутые выше 20, обнаруживаемые в белках - это протеиногенные аминокислоты. Классифицировать их можно по разным признакам. С наших позиций предпочтительнее упомянуть классификации, основанные на биологической роли аминокислот:

  1. По строению соединений, получающихся при расщеплении углеродной цепи аминокислоты в организме, различают:

а) глюкопластичные (глюкогенные) - при недостаточном поступлении углеводов или нарушении их превращения они через щавелевоуксусную и фосфоэнолпировиноградную кислоты превращаются в глюкозу (глюкогенез) или гликоген. Это крайне нежелательное явление, если ваша цель - наращивание мышечной массы и силы! К этой группе относятся глицин, аланин, серин, треонин, валин, аспарагиновая и глутаминовая кислота, аргинин, гистидин и метионин;

б) кетопластичные (кетогенные) - ускоряют образование кетоновых тел - лейцин, изолейцин, тирозин и фенилаланин (три последние могут быть и глюкогенными).
2. В зависимости от того, могут ли аминокислоты синтезироваться в организме или обязательно должны поступать в составе пищи, различают:

а) заменимые;

б) незаменимые.

К незаменимым относятся изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин. В детском возрасте незаменимы также аргинин и гистидин (взрослый организм не требует их поступления с пищей). Существуют и другие классификации, которые не имеют особого значения применительно к тому аспекту, в котором мы будем далее рассматривать аминокислоты.
  1   2   3   4   5   6

перейти в каталог файлов
связь с админом