Главная страница

Ответы на экзамен МБ. История микробиологии


Скачать 1.15 Mb.
НазваниеИстория микробиологии
АнкорОтветы на экзамен МБ.doc
Дата24.04.2018
Размер1.15 Mb.
Формат файлаdoc
Имя файлаОтветы на экзамен МБ.doc
ТипДокументы
#39859
страница3 из 18
Каталогid300825291

С этим файлом связано 43 файл(ов). Среди них: Fedyaev_Zlokachestvennye_opukholi_v_ChLO.pdf, ЛЕКЦИИ Конспект лекций по патологической анатомии.doc, Atlas_patologicheskoy_anatomii.pdf, Lektsii_po_patologicheskoy_anatomii_Lekoev.pdf, ЛЕКЦИЯ №5 Топография желудока и операции на нем.ppt.ppt, 3_Сердечная недостаточность.ppt.ppt, ЛЕКЦИЯ №4 Топография передней брюшной стенки и хирургия грыж.ppt, 2_Перикардит.ppt.ppt, Лекция №3. Топография груди.ppt.ppt, Ответы на экзамен по БХ.doc и ещё 33 файл(а).
Показать все связанные файлы
1   2   3   4   5   6   7   8   9   ...   18

1. Стационарный способ: питательные среды сохраняются постоянными, с ними никаких дополнительных манипуляций не производят. Однако при таком способе культивирования в жидких питательных средах, где преобладают анаэробные энер­гетические процессы, выход биомассы незначителен. Поэтому в связи с развитием микробиологической промышленности были разработаны принципиально новые способы культивирования, позволяющие получать гораздо больший выход биомас­сы или биологически активных соединений. К их числу относятся метод глубинно­го культивирования с аэрацией и метод использования проточных сред.

2. Метод глубинного культивирования с аэрацией. Для выращивания с помо­щью этого способа применяют специальные устройства — реакторы. Они представ­ляют собой герметические котлы (приспособленные автоклавы), в которые залива­ется жидкая питательная среда. Реакторы снабжены автоматическими приспособле­ниями, позволяющими поддерживать постоянную температуру, оптимальные рН и гН2, дозированное поступление необходимых дополнительных питательных ве­ществ. Однако главная особенность таких реакторов в том, что они постоянно про­дуваются стерильным воздухом и в них установлены мешалки, с помощью которых среда постоянно перемешивается. Поэтому во всей питательной среде создается та­кая концентрация свободного кислорода, при которой энергетические процессы происходят в аэробных условиях, т. е. достигается максимальное использование энергии, заключенной в глюкозе, а следовательно, и максимальный выход биомас­сы. Для примера: выход биомассы при стационарном методе культивирования Е. соli в МПБ через 18—20 ч составляет 1—2 млрд клеток на 1 мл среды, а при глубинном методе через 12-14 ч - 50-60 млрд клеток/мл среды.

3. Использование проточных питательных сред позволяет создать условия, при которых клетки имеют возможность длительное время находиться в определенной фазе роста (экспоненциальной) при постоянной концентрации питательных ве­ществ и в одних и тех же условиях, обеспечивающих непрерывный рост культуры. Методы получения непрерывных культур основаны на том, что в аппарат, где растут клетки, непрерывно добавляют свежую питательную среду и одновременно из него удаляют соответствующее количество бактерий.

Таким образом, в соответствии со способами культивирования различают:

1) периодические (при ста­ционарном и глубинном методах культивирования) и

2) непрерывные (при проточном способе) культуры микроорганизмов.

3) синхронные культуры, в которых все клетки одновременно (синхронно) делятся. Однако такая синхронность сохраняется, как правило, в течение 2—3 циклов деления, а затем она нарушается. Синхронные культуры используют в ос­новном для изучения тех или иных стадий клеточного цикла бактерий и роли отдель­ных генов (и их продуктов) в их осуществлении.
2. Искусственные питательные среды, применяемые для выращивания микробов. Требования, предъявляемые к питательным средам. Дифференциально-диагностические среды, принципы их конструирования. Состав сред Эндо и Плоскирева.

Они могут выть жидкими, твердыми (лучше называть их плотными) или полужидкими. Жидкие cреды готовят на основе водных растворов каких-либо веществ, чаще всего мясной воды, различных гидролизатов, иногда жидких естественных продуктов (молока, крови и др.). Для получения плотных сред к ним добавляют или агар, или желатин, или силикагель в соответствующих концентрациях. По происхождению среды де­лят на естественные (кровяные, молочные, картофельные, яичные) и искусственные, получившие особенно широкое распространение.

Питательные сре­ды должны обязательно отвечать трем основным требованиям:

1. они должны содержать в достаточном количестве все необходимые питатель­ные вещества (источники энергии, углерода, азота), соли и ростовые факторы;

2. должны иметь оптимальную для роста данного вида бактерий рН;

3. должны иметь достаточную влажность (при их усыхании повышается концент­рация питательных веществ, особенно солей, до уровней, тормозящих рост бактерий).

-Дифференциально-диагностические — среды, позволяющие отличать одни виды бактерий от других по их ферментативной активности или культуральным проявлениям. К ним относятся среды Эндо, Левина, Плоскирева, Гисса и многие др.

-Среда Эндо. Состоит из МПА с добавлением 1% лактозы и обесцвеченного сульфитом натрия основного фуксина (индикатор). Среда Эндо имеет слаборозовый цвет. Используется в диагностике кишечных инфекций для дифференциации бактерий, разлагающих лактозу с образованием кислых продуктов, от бактерий, не обладающих этой способностью.

-Среда Плоскирева.

В состав среды входят: 53,6% сухого питательного агара с желчными солями, 14,4% лимонно­кислого натрия, 11% гипосульфита, 12% лактозы, 3,7% фосфорнокислого натрия, 0,03—0,06% нейтрального красного, 0,002 бриллиантового зеленого, 1,2% соды кальцинированной, 0,04% йода, 3,7% NaCl.
3. Питание микробов. Типы питания. Источники углерода, азота и энергии. Механизм питания бактерий, диффузия, облегченная диффузия, активный транспорт. Пермеазные системы, их состав, этапы активного транспорта.

Большинство бактерий живет в среде, мало подходящей для того, чтобы поддер­живать строгое соотношение воды, солей и органических веществ, без которого не­возможна жизнь. Это обусловливает необходимость постоянного и тщательного ре­гулирования обмена различными веществами, который происходит между клеткой и внешней средой и контролируется клеточной мембраной. Она проницаема для многих веществ, поток их идет в обоих направлениях (из клетки и в клетку), но структура мембраны такова, что она обладает избирательной и неравномерной про­ницаемостью, определяющей механизмы питания бактерий.
Типы питания. К числу важнейших химических элементов-органогенов, необходимых для син­теза органических соединений, относят: углерод, азот, водород и кислород. Свою по­требность в водороде и кислороде бактерии удовлетворяют за счет воды. Сложнее обстоит дело с углеродным и азотным питанием. По способу углеродного питания бактерии делят на аутотрофы и гетеротрофы.

-Аутотрофы— организмы, которые полно­стью удовлетворяют свои потребности в углероде за счет С02.

-Гетеротрофы— организмы, которые не могут удовлетворить свои потребности в углероде только за счет С02, а требуют для питания готовых органических соединений. В свою очередь, гетеротрофов подразделяют на сапрофитов, т. е. гетеротрофов, источником питания которых служат мерт­вые органические субстраты; и паразитов т. е. гете­ротрофов, живущих за счет живых тканей животных и растений. Для превращения С02 в органические соединения требуется энергия. Существует два источника этой энергии - фотосинтез и хемосинтез.

-Фотосинтез — это синтез за счет энергии солнечного света.

-Хемотаксис — грамотрицательные бактерии используют для своего роста энергию хемо­синтеза, т. е. энергию, получаемую за счет окисления неорганических соединений.
Питательные вещества из внешней среды поступают в бактериальную клетку с помощью трех основных механизмов: пассивной диффузии, облегченной диффу­зии и активного транспорта.

1. Пассивная диффузия осуществляется за счет различного содержания пита­тельных веществ в среде и в клетке и происходит в направлении от большей концен­трации к меньшей, т. е. по градиенту концентрации. Когда концентрация вещества по ту и другую сторону мембраны уравнивается, пассивная диффузия прекращается. Ее скорость зависит от величины градиента, но она имеет определенный предел. Та­ким путем в клетку проникает (и покидает ее) вода вместе с растворенными в ней различными мелкими молекулами, способными проходить через мелкие поры мем­браны. Для пассивной диффузии характерно отсутствие субстратной специфично­сти, и она не требует затраты энергии.

2. Облегченная диффузия характеризуется выраженной субстратной специфично­стью и протекает при обязательном участии специфических белков, локализованных в мембране; синтез некоторых из них индуцируется соответствующими субстратами. Эти белки, получившие название пермеаз, обладают субстратной специфичностью. Они распознают и связывают молеку­лу субстрата на внешней стороне мембраны и обеспечивают каким-то образом ее пере­нос через мембрану. На внутренней поверхности мембраны комплекс пермеаза—суб­страт диссоциирует, освободившаяся молекула субстрата включается в общий метаболизм клетки, а пермеаза повторяет очередной цикл переноса своего субстрата, который не способен проникать через мембрану путем простой диффузии. Главное свойство пермеаз - способность проходить через мембрану как с присоединенной молекулой суб­страта, так и без нее. Однако облегченная диффузия происходит только по градиенту концентрации, но не против него, поэтому она не требует затраты энергии. Пермеазы, присоединившись к субстрату, повышают его способность проникать через мембрану. Облегченная диффузия протекает со значительно более высокой скоростью, чем пас­сивная. Ее скорость подчиняется закону Михаэлиса-Ментен, и при достижении равно­весия концентрация субстрата, доставляемого посредством облегченной диффузии, на внутренней и внешней поверхностях мембраны становится одинаковой.

3. Активный транспорт. С помощью механизмов активного транспорта растворен­ные вещества могут поступать в клетку против градиента концентрации, поэтому ак­тивный транспорт требует от клетки затраты энергии. У бактерий этот механизм пи­тания является преобладающим. С его помощью они обеспечивают такие концентрации растворенных питательных веществ внутри клетки, которые могут во много раз превышать их концентрации во внешней среде и обеспечивают им высокие скорости метаболизма даже при низкой концентрации химических веществ в окружающей сре­де. У многих бактерий, в особенности грамотрицательных, в активном транспорте принимают участие особые связывающие белки, не идентичные пермеазам и не вхо­дящие в структуру мембраны, а локализованные в периплазматическом пространстве. У связывающих белков отсутствует каталитическая активность, но они обладают очень высоким сродством к определенным питательным веществам — к различным аминокислотам, сахарам, неорганическим ионам. Выделено и изучено более 100 раз­личных связывающих белков, которые образуют прочные комплексы со своими суб­стратами и необходимы для их активного переноса через мембрану. Связывающие белки функционируют только в комплексе со специфическими пермеазами, осуществ­ляющими активный перенос субстрата через мембрану. Метаболическая энергия, необходимая для этого, используется для снижения сродства пермеазы к своему суб­страту на внутренней поверхности мембраны по сравнению с ее сродством к нему на внешней стороне мембраны. В результате этих превращений происходит изменение скорости выхода субстрата наружу, она становится во много раз меньше скорости его поступления в клетку. При этом механизме активного транспорта через мембрану в клетку поступают против градиента концентрации химически не измененные пита­тельные вещества. У бактерий, вместе с тем, существуют и такие транспортные систе­мы, которые переводят питательные вещества в химически измененную форму, не способную проникать через мембрану. К их числу относится фосфотрансферазная си­стема, широко распространенная среди бактерий. С помощью этой системы транспор­тируются многие сахара и их производные, в процессе переноса они фосфорилируются и поступают в клетку в виде сахарофосфатов. Поскольку мембрана для последних непроницаема, сахарофосфаты остаются внутри клетки.
4. Дыхание микробов. Аэробы и анаэробы. Получение энергии в аэробных и анаэробных условиях. Облигатные и факультативные анаэробы. Причины высокой чувствительности анаэробов к молекулярному кислороду. Методы культивирования анаэробов.

По типу дыхания подразделяются на следующие четыре группы:

1. строгие аэробы (размножаются только в присутствии кислорода);

2. микроаэрофилы (нуждаются в уменьшенной концентрации свободного кисло­рода);

3. факультативные анаэробы (могут потреблять глюкозу и размножаться как в аэробных, так и в анаэробных условиях);

4. строгие анаэробы (размножаются только в бескислородных условиях, т. е. не используют 02 в качестве конечного акцептора электронов).

--Строгие анаэробы. Синтез АТФ при потреб­лении глюкозы в анаэробных условиях (гликолиз) происходит за счет фосфорили- рования субстрата. Из одной молекулы глюкозы в этих условиях образуются две мо­лекулы молочной кислоты, а выход энергии составляет всего 20 ккал (синтезируются две молекулы АТФ) на моль глюкозы, т. е. во много раз меньше, чем при полном окислении этого основного носителя энергии. Хотя анаэробы также мобилизуют энергию в результате окислительно-восстановительных процессов, т. е. в результате переноса водорода (электронов), но кислород для них не служит конечным акцепто­ром электронов. Более того, молекулярный кислород оказывает на них токсическое действие, причины которого следующие:

1. у анаэробных бактерий кислород угнетает анаэробные энергообразующие ре­акции (эффект Пастера);

2. у строгих анаэробов отсутствует фермент каталаза, поэтому накапливающая­ся в присутствии кислорода Н202 оказывает на них бактерицидное действие;

3. у строгих анаэробов отсутствует система регуляции окислительно-восста­новительного потенциала (редокс-потенциала)

--Различают облигатные (строгие, обязательные) и факультативные (необязательные) анаэробы. Облигатные анаэробы погибают при наличии свободного кислорода в окружающей среде. Факультативные анаэробы способны существовать и размножаться как в кислородной, так и в бескислородной среде. К факультативным анаэробам относятся кишечная палочка, иерсинии, стафилококки, стрептококки и шигеллы и др.

--Культивирование анаэробов. В связи с высокой чув­ствительностью строгих анаэробов к молекулярному кислороду для их культиви­рования с помощью различных способов создаются бескислородные условия. С этой целью используются механические, физические, химические и биологиче­ские способы удаления кислорода: посевы в глубокие столбики агара; кипячение (регенерация) жидкой питательной среды (Китта—Тароцци), содержащей глюко­зу и кусочки печени (для связывания растворенного кислорода), и заливка ее сте­рильным вазелиновым маслом; добавление в атмосферу роста химических ве­ществ, поглощающих кислород (например, щелочного пирогаллола); совместное культивирование строгих аэробов и анаэробов на кровяном агаре с глюкозой в за- парафинированной чашке Петри (вначале растут строгие аэробы, а после сниже­ния содержания кислорода — анаэробы) — способ Фортнера — и т. п. Наилучшим методом является применение специальных анаэростатов, из которых воздух от­качивается и (или) замещается каким-либо инертным газом или смесью азота и углекислого газа.
5. Процессы брожения и гниения. Их значение для круговорота веществ в природе, а также для хозяйственной деятельности человека. Круговорот азота в природе и бактерии, участвующие в нем. Виды брожения.

Анаэробиоз — жизнедеятельность, протекающая при отсутствии сво­бодного кислорода. Если донорами и акцепторами водорода яв­ляются органические соединения, то такой процесс называется брожением. При брожении происходит ферментативное расщепление органических соединений, преимущественно углеводов, в анаэробных условиях. С учетом конечного продукта расщепления углеводов различают спиртовое, молочнокислое, уксуснокислое и другие виды брожения.

Гниение, разложение сложных азотсодержащих органических соединений (преимущественно белков) под действием гнилостных микроорганизмов; т.к. при гниение выделяется преимущественно газообразный аммиак, гниение называется также аммонификацией, а микроорганизмы, участвующие в нём, — аммонификаторами. Гниение — сложный многоступенчатый биохимический процесс, направление которого и результат не постоянны и зависят от химической природы субстрата, от доступа кислорода и состава микрофлоры. На разных этапах гниение доминируют специфические группы микробов.

  Среди гнилостных микроорганизмов ведущая роль принадлежит бактериям — анаэробам и факультативным анаэробам, обладающим мощными протеолитическими ферментами, а также аэробным спороносным бактериям рода Bacillus и неспороносным из рода Pseudomonas. В гниение участвуют и плесневые грибы; роль актиномицетов незначительна. Большинство гнилостных бактерий сапрофиты, некоторые из них способны гидролизовать живую ткань, вызывая заболевания.

Гниение играет важную роль в круговороте веществ в природе: в результате жизнедеятельности и гибели животных и растений в почву и водоёмы попадает много белковых продуктов, которые лишь благодаря деятельности гнилостной микрофлоры не накапливаются, а минерализуются и вновь могут быть использованы растениями. С помощью протеолитических ферментов (протеаз и пептидаз) гнилостные бактерии расщепляют белки на полипептиды и далее на аминокислоты, подвергаемые многими микроорганизмами дезаминированию или декарбоксилированию. В результате дезаминирования выделяется газообразный аммиак, образуются насыщенные и ненасыщенные кислоты жирного и ароматического ряда, кето- и оксикислоты; при декарбоксилировании — амины, многие из которых очень ядовиты. Радикалы аминокислот, появляющиеся в результате дезаминирования и декарбоксилирования, подвергаются дальнейшему распаду. Из триптофана образуются скатол и индол, из серусодержащих аминокислот метионина и цистеина — сероводород; жирные кислоты могут сбраживаться с выделением метана. При гниение без доступа воздуха преобладают восстановительные процессы и накапливаются многие указанные продукты; при свободном доступе воздуха Г. проходит до конца, и весь углерод органических соединений выделяется в виде CO2.
6. Ферментация углеводов как дифференциально-диагностический признак бактерий. Среды Гисса. принципы их конструирования. Оценка результатов роста бактерий на средах Гисса.

Ферментативный спектр является таксономическим признаком, характерным для семейства, рода и — в некоторых слу­чаях — для видов. Поэтому определением спектра ферментативной активности поль­зуются при установлении таксономического положения бактерий. Наличие экзофермен­тов можно определить при помощи диффе­ренциально-диагностических сред.

Для многих микроорганизмов таксономическим при­знаком служит способность разлагать определенные углеводы с образованием кислот и газообразных продук­тов. Для выявления этого используют среды Гисса, со­держащие различные углеводы (глюкозу, сахарозу, маль­тозу, лактозу и др.). Для обнаружения кислот в среду добавлен реактив Андреде, который изменяет свой цвет от бледно-желтого до красного в интервале рН 7,2—6,5, поэтому набор сред Гисса с ростом микроорганизмов называют «пестрым рядом».
ГЕНЕТИКА МИКРООРГАНИЗМОВ

1. Ядерный аппарат у бактерий и его особенности. Механизм репликаиии бактериальной хромосомы.

Генетическая система бактерий имеет по крайней мере четыре особенности, при­сущие только этим организмам.

1. Хромосомы бактерий (и соответственно плазмид) располагаются свободно в цитоплазме, не отграничены от нее никакими мембранами, но связаны с опреде­ленными рецепторами на цитоплазматической мембране. Поскольку длина хромо­сомы (у Е. соli около 1,6 мм) во много раз превышает длину бактериальной клетки (1,5—3,0 мкм в среднем), хромосома особым компактным образом в ней упакована: молекула хромосомной ДНК находится в суперспирализованной форме и свернута в виде петель, число которых составляет 12—80 на хромосому. Петли в центре нуклеоида объединяются за счет связывания ДНК с сердцевинной структурой, пред­ставленной молекулами особого класса РНК — 4,55 РНК. Такая упорядоченная упа­ковка обеспечивает постоянную транскрипцию отдельных оперонов хромосомы и не препятствует ее репликации. Возможно, что петли упакованной хромосомы способствуют компартментализации рибосом.

2. Хотя бактерии являются гаплоидными организмами, т. е. имеют один набор ге­нов, содержание ДНК у них непостоянно, оно может при благоприятных условиях достигать значений, эквивалентных по массе 2, 4, 6 и даже 8 хромосомам. У всех прочих живых существ содержание ДНК постоянное, и оно удваивается (кроме ви­русов и плазмид) перед делением.

3. У бактерий в естественных условиях передача генетической информации проис­ходит не только по вертикали, т. е. от родительской клетки дочерним, но и по горизон­тали с помощью различных механизмов: конъюгации, сексдукции, трансдукции, трансформации.

4. У бактерий очень часто помимо хромосомного генома имеется дополнительный плазмидный геном, наделяющий их важными биологическими свойствами, неред­ко — специфическим (приобретенным) иммунитетом к различным антибиотикам и другим химиопрепаратам.

Содержание ДНК у бактерий зависит от условий их роста: при благоприятных условиях оно возрастает до величин, соответствующих массе нескольких хромо­сом. Это уникальное свойство бактериального генома. Биологическое значение его состоит в том, что, регулируя содержание копий своих генов (а оно будет опре деляться количеством копий синтезируемых хромосом), бактерии одновременно приспосабливают скорость своего размножения к условиям роста. Наряду с увели­чением содержания ДНК у бактерий в этом случае существенно возрастает и коли­чество рибосом. Благодаря этому создаются необходимые условия для транскрип­ции и трансляции (а у бактерий они происходят одновременно) нескольких копий генов одновременно, возрастает суммарная скорость биосинтеза всех субклеточ­ных и клеточных структур и соответственно скорость размножения бактерий. Время клеточного цикла бактерий сокращается от нескольких часов до 20—30 мин. Скорость размножения определяет возможность накопления в окружающей среде большого запаса клеток данного вида. Это и является причиной существования бактерий в природе многие миллионы лет. Возможность регулировать ско­рость собственного размножения — одно из главных условий, обеспечивающих выживание бактерий в окружающей среде, а следовательно, и сохране­ние вида в природе.
Репликация ДНК у бактерий начинается со строго фиксированного сайта хромосомы — оriС. Он включает в себя участки с так назы­ваемыми ДНК-боксами и расположенными между ними короткими последова­тельностями. Оба элемента примыкают к гену dnaА. Это и служит сигналом для действия ДНК-хеликазы. Репликация имеет полуконсервативный характер, идет одновременно в двух направлениях и заканчивается также в строго фиксиро­ванной точке -terminus. Поскольку цепи ДНК антипараллельны (если одна нить начинается с 5'-конца, другая — с З'-конца), а ДНК-полимераза III осуществляет синтез ДНК только в направлении 5'>3', репликация происходит своеобразно: на одной из расплетенных нитей — «прямой», или лидерной, или веду­щей, — она идет непрерывно, а на другой — отстающей — ДНК-полимераза III долж­на возвращаться, чтобы наращивать нить тоже в направлении 5'>3', прерывисто, че­рез образование сегментов Оказаки, длиной у бактерий около 1000 нуклеотидов (у эукариот - около 200—300 нуклеотидов).
2. Бактериальная хромосома, ее упаковка в клетке. Формы обмена генетическим материалом у бактерий: конъюгация, трансформация, трансдукция, трансфекция и сексдукция.
1   2   3   4   5   6   7   8   9   ...   18

перейти в каталог файлов
связь с админом