Главная страница

Подготовка к егэ по математике Теория для решения задач 3 в егэ 2014 года


Скачать 274.4 Kb.
НазваниеПодготовка к егэ по математике Теория для решения задач 3 в егэ 2014 года
Анкор3.pdf
Дата16.06.2017
Размер274.4 Kb.
Формат файлаpdf
Имя файла3.pdf
оригинальный pdf просмотр
ТипДокументы
#23821
Каталог0nepeaceonelove

С этим файлом связано 22 файл(ов). Среди них: Задание 5 Лексические нормы.doc, 3.pdf, S4.pdf, Podgotovka_k_sochineniyu_na_EGE_Senina_Narushevi.pdf, КИМ 5. ЕГЭ 2015. Лексические нормы.pptx.pptx, 2.pdf, S3.pdf, G_T_Egoraeva_Rabota_nad_kommentariem_k_sformul.pdf, лексические нормы.ppt.ppt, 1.pdf и ещё 12 файл(а).
Показать все связанные файлы
Подготовка к ЕГЭ по математике Теория для решения задач 3 В ЕГЭ 2014 года)
2015
Александр и Наталья Крутицких www.matematikalegko.ru
01.01.2015
АС. Крутицких и НС. Крутицких. Подготовка к ЕГЭ по математике. http://matematikalegko.ru АС. Крутицких и НС. Крутицких. Подготовка к ЕГЭ по математике. Никакой особой теории для решения указанных задач нет. Необходимы простая логика и умение производить элементарные вычисления, затем требуется выбрать из полученных ответов оптимальный (отвечающий вопросу в условии. Задачи просты. В них нет ничего, кроме простых арифметических действий. Встречается несколько задач на проценты. Необходимо уметь составлять и решать пропорцию. Переводить часы в минуты и наоборот. Повторим теорию о процентах
1% — это одна сотая часть от чего-либо (1/100), это две сотых чего- либо
(2/100), значит
56% это
56/100 итак далее. Итак, от какой-либо величины,
- это части (доли) от чего-либо, например если выразить в долевом отношении 25% от килограмма конфет, то это будет одна четверть от килограмма. Чтобы найти дробь (или часть) от числа, надо дробь (часть) умножить на это число.

*** ЗАПОМНИМ ВАЖНОЕ ПРАВИЛО за 100%
принимается та величина, с которой мы сравниваем
АС. Крутицких и НС. Крутицких. Подготовка к ЕГЭ по математике. http://matematikalegko.ru Напомним, что пропорция — это равенство вида что тоже самое (это разная форма записи. Основное правило пропорции произведение крайних членов равно произведению средних, то есть
Если какая-либо величина в пропорции неизвестна, ее можно найти именно поэтому правилу Например, из пропорции находим х

перейти в каталог файлов
связь с админом