Главная страница

Взаимосвязь обменов. Патохимия сахарного диабет.... Учебное пособие для преподавателей и студентов VI курса лечебного и педиатрического факультетов, курсантов факультета послевузовского обучения


Скачать 298.5 Kb.
НазваниеУчебное пособие для преподавателей и студентов VI курса лечебного и педиатрического факультетов, курсантов факультета послевузовского обучения
АнкорВзаимосвязь обменов. Патохимия сахарного диабет..
Дата02.10.2017
Размер298.5 Kb.
Формат файлаdoc
Имя файлаВзаимосвязь обменов. Патохимия сахарного диабет....doc
ТипУчебное пособие
#16833
страница1 из 4
  1   2   3   4


МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
ЧИТИНСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ
Кафедра биологической химии с курсом клинической биохимии


Никитина Л.П., Соловьёва Н.В.


ВЗАИМОСВЯЗЬ ОБМЕНОВ.
ПАТОХИМИЯ САХАРНОГО

ДИАБЕТА

Учебное пособие для преподавателей и студентов VI курса

лечебного и педиатрического факультетов, курсантов

факультета послевузовского обучения

Чита, 2000

Учебное пособие составлено сотрудниками кафедры биохимии Читинской государственной медицинской академии: заведующей кафедрой проф. Л.П. Никитиной и доцентом, к.м.н. Н.В. Соловьевой.

ВВЕДЕНИЕ

Настоящие учебно-методические указания созданы на кафедре биологической химии с курсом клинической биохимии.

Данное пособие предлагается в помощь студентам 6 курса лечебного и педиатрического факультетов для углубленного понимания метаболизма углеводов, липидов, белков и нуклеиновых кислот в организме человека в норме и при патологии.

Курсанты факультета послевузовского обучения (врачи-лаборанты) также могут им воспользоваться при изучении молекулярных основ медицинской биохимии.

1.Понятие о метаболизме, его стадиях

Любой живой организм - это открытая система, то есть его жизнедеятельность тесно связана с окружающей средой, откуда он получает питательные вещества и кислород, а выделяет конечные продукты распада. Самые разнообразные преобразования, происходящие в организме с поступившими соединениями, носят название метаболизма, который включает две тесно взаимообусловленных фазы: анаболическую и катаболическую. Первая представляет эндогенный синтез веществ или их поступление извне. Катаболизм – прямо противоположный процесс: распад химической молекулы или выделение её из организма.

Естественно, чтобы организм функционировал нормально, необходимы тесные контакты между физическими и химическими превращениями самых разнообразных по природе соединений.

Особая роль в регулировании этих процессов принадлежит балансу энергии, причем катаболизм обычно сопровождается её высвобождением, а большинство реакций биосинтеза принадлежит к эндэргоническим.

Все известные классы органических веществ, обнаруживаемых в тканях, включают представителей от самых простых, не способных к гидролизу, до очень сложных биополимеров. Поэтому в катаболической фазе выделяют три стадии: гидролитическую, специфическую и неспецифическую.

Гидролитическая стадия характеризуется распадом сложных углеводов, липидов, полинуклеотидов и белков до монопроизводных. Она локализуется в желудочно-кишечном тракте, где в роли субстратов выступают пищевые компоненты, а также в тканях - в этот процесс вовлекаются вышеперечисленные эндогенные представители.

Специфическая стадия - это дальнейший окислительный (аэробный, реже - анаэробный) распад моноструктур. Основная цель - привести специфические превращения к одному знаменателю (чтобы уменьшить количество необходимых ферментов). Такими общими метаболитами служат ацетил-КоА, пируват и некоторые соединения цикла трикарбоновых кислот (схема 1).

После гидролиза полисахаридов образуются моносахариды, в первую очередь, глюкоза. Она поступает в клетку и фосфорилируется под действием фермента гексокиназы. Фосфорный эфир глюкозы (глюкозо-6-фосфат) подвергается гликолизу, конечным продуктом которого является пируват. В митохондриях эта -кетокислота под влиянием полиферментного комплекса преобразуется в ацетил-КоА (окислительное декарбоксилирование пирувата).

Аналогичные изменения происходят с продуктом гидролиза многих дву- и более компонентных липидов (нейтральных жиров, глицерофосфатидов) - глицерином. Он также фосфорилируется и после окисления превращается в дигидроксиацетонфосфат или глицероальдегид-3-фосфат, которые являются метаболитами гликолиза. Конечное соединение последнего, как уже было указано выше, используется в процессе окислительного декарбоксилирования ПВК. Высшие жирные кислоты - компоненты большинства липидов - служат субстратами аэробного окисления, в результате образуется ацетил-КоА.


Схема 1. Стадии катаболизма основных биополимеров



Составные части сложных липидов - азотистые основания и продукты гидролиза белков - аминокислоты - в своем составе содержат аминогруппу, что, естественно, обеспечивает им специфичность. Отсюда эти соединения, лишаясь NH2 - группы, сохраняют углеродный скелет, который легко преобразуется в выше названные вещества (пируват, ацетил-КоА и метаболиты цикла трикарбоновых кислот).

Для большинства органических структур конечными продуктами распада являются углекислый газ, вода, а для азотсодержащих - ещё и аммиак, который обезвреживается, превращаясь в мочевину. Углекислый газ образуется путем обычного декарбоксилирования.

Рассмотрим синтез эндогенной воды. Дело в том, что кислород в принципе довольно токсичное соединение, поэтому фактически так называемый аэробный распад органических веществ осуществляется обычно не присоединением кислорода к субстрату, а отщеплением от последнего водорода. Электроны и протоны, проходя через ряд промежуточных переносчиков, достигают кислорода с последующим образованием воды (биологическое окисление). В этом процессе происходит ступенчатое высвобождение энергии (чаще три, реже два раза). Почти половина её используется для синтеза АТФ из АДФ и неорганического фосфата (окислительное фосфорилирование). Другая часть, выделяясь в виде тепла, обеспечивает постоянство температуры тела теплокровных животных, в том числе человека. В природе есть много веществ, в первую очередь, токсины патогенной микрофлоры, которые нарушают взаимодействие биологического окисления с окислительным фосфорилированием, в результате возрастает количество тепловой энергии (гипертермия) и снижается генез АТФ. Последний является универсальным макроэргом, который используется в мышечном сокращении, передаче нервного импульса, в биосинтезе различных соединений. Поэтому патология биоэнергетических процессов проявляется развитием мышечной слабости, общим недомоганием (симптоматика, характерная для большинства инфекционных заболеваний).

Следует отметить, главная реакция, ответственная за перенос водорода на кислород, обеспечивается следующими переносчиками: НАД, ФАД или ФМН, витаминами Е или К, коэнзимом Q. Поэтому дефициты витаминов РР (компонент НАД+), В2 (составная часть ФАД, ФМН), К, токоферолов провоцируют развитие патологических состояний.

Если сопоставлять обе фазы метаболизма - анаболическую и катаболическую, окажется, что они тесно взаимосвязаны между собой. Продукты расщепления используются в организме для синтеза различных веществ, кроме того, энергия, высвобождающаяся при распаде соединений, необходима для образования макромолекул. И третье связующее звено: в реакциях окисления, характерных для катаболизма, образуются так называемые восстановительные эквиваленты (например, НАД+Н+, НАДФН+Н+, ФАДН2), водороды которых входят в состав органических соединений.

Таким образом, в анаболической фазе также можно выделить три стадии, причем первая - неспецифическая - общая для обеих фаз. Её продукты могут поставляться для генеза продуктов липидного, углеводного и азотистого происхождения. Вторая стадия анаболизма завершается образованием простейших специфических представителей разных классов (моносахаридов, высших жирных кислот, аминокислот и др.). Синтез биополимеров может идти двумя способами. Для получения гликогена или гетерополисахаридов (гиалуроновой кислоты, хондроитинсульфата, гепарина) требуются лишь активированные субстраты (УДФ-глюкоза, УДФ-галактоза и их производные), соответствующие ферменты. Генез же полипептидов (белков) называется матричным, так как для обеспечения специфичности протеина необходима матрица, роль которой выполняет информационная РНК, в свою очередь, для синтеза последней матрицей служит транскриптон ДНК.

Как мы ни стараемся разделить все протекающие в клетке процессы, сделать это невозможно. Все они тесно связаны между собой, жёстко зависят друг от друга. Поэтому повреждение хотя бы одного звена всегда приводит к глубоким нарушениям самых разных сторон метаболизма. Для иллюстрации данного суждения остановимся на характеристике взаимоотношений углеводного метаболизма с другими видами обменов.

  1   2   3   4
связь с админом