Главная страница

Патология метаболизма. Учебное пособие для студентов высших учебных медицинских заведение


Скачать 1.35 Mb.
НазваниеУчебное пособие для студентов высших учебных медицинских заведение
АнкорПатология метаболизма.doc
Дата24.04.2018
Размер1.35 Mb.
Формат файлаdoc
Имя файлаПатология метаболизма.doc
ТипУчебное пособие
#39839
страница2 из 24
Каталогid19025025

С этим файлом связано 13 файл(ов). Среди них: Почки.doc, Курортология_Рогозина.doc, Печень.doc, Хроническая лучевая болезнь. Заболевания у раненых.ppt.ppt, Патология обменов веществ.doc, Хронические гепатиты, Циррозы.ppt.ppt, Патология метаболизма.doc, Опухолевый рост.doc и ещё 3 файл(а).
Показать все связанные файлы
1   2   3   4   5   6   7   8   9   ...   24
Кишечная (каловая) аутоинтоксикация. Это понятие (синдром) применяется для обозначения нарушений самочувствия и функций внутренних органов у пациентов с запорами и гнилостной диспепсией. Причины, формирующие синдром, следующие:

По сути, синдром возникает при нарушении кишечного и пристеночного этапов переваривания белков и аминокислот первичного или вторичного характера. Патогенез связан с образованием и всасыванием аминов, аммиака, индола, фенола под влиянием собственной жизнедеятельности микробов кишечника из непереваренных и не всосавшихся белковых продуктов. Кишечными бактериями вырабатываются амины кадаверин, гистамин, пиперидин, серотонин, путресцин, октопамин, тирамин. Из триптофана образуются циклические иминосоединения – индол и его производные: скатол, скатоксил, индоксил. Деградация тирамина и тирозина кишечной микрофлорой дает крезол и фенол. Эти соединения обладают фекальным запахом, токсичны и, по некоторым данным, обладают канцерогенной активностью. В ходе всех этих процессов выделяются ядовитые сероводород, метилмеркаптан и аммиак. Аммиак обезвреживается в печени с образованием карбамида, а производные фенола и индола нейтрализуются путем образования парных соединений и экскретируются с мочой. Показателем интенсивности образования вышеперечисленных продуктов в кишечнике служит содержание в крови пиперидина (амины) и индикана (индолпроизводные).

Клинические проявления кишечной аутоинтоксикации. Помимо того, что организм полностью или частично лишается необходимых нутриентов и калорий, в кишечнике создается поток патологических сигналов в виде биологически активных веществ, конкурирующий с физиологическими сигналами (например, аминостатическое действие продуктов переваривания белков на аппетит). Развивается антигенная и суперантигенная стимуляция иммунной системы.

При исчерпании дезинтоксикационных возможностей энтероцитов и печени возникают патологические последствия: колебания системного артериального давления, пульсирующая головная боль, снижение болевой чувствительности, анемия, миокардиодистрофия, снижение аппетита, торможение желудочной секреции, а в тяжелых случаях развиваются угнетение дыхания, сердечная недостаточность и кома.

Установлена связь тирамина с патогенезом гипертензии, серотонина – с патогенезом мигрени. Гистамин снижает порог резистентности к анафилаксии. Аминокислотный продукт октопамин является ложным нейротрансмиттером и патогенетически связан с синдромом энцефалопатии.

Нарушения трансмембранного транспорта аминокислот. При эффективном внутриполостном переваривании у взрослых людей всасываются только аминокислоты (выше 98 %) с помощью трансмембранных транспортных переносчиков аминокислот (пермеазных систем). У новорожденных и детей 2-3 месяцев жизни, особенно недоношенных, при искусственном вскармливании возможно всасывание коротких пептидов, в том числе антигенных, с формированием энтеральной перекрестной сенсибилизации. Таким же путем попадают в кровь новорожденных иммуноглобулины материнского молока, поддерживая пассивный иммунитет. В молозиве содержится ингибитор пепсина, предохраняющий антитела от быстрого гидролиза.

Дефекты трансмембранных транспортных переносчиков аминокислот в клетки – пермеазных систем (энтероциты, гепатоциты, нефроциты) формируют клинически значимую группу заболеваний, основой развития которых является нарушение трансмембранного транспорта аминокислот. По причинам многие из них являются наследственными, другие – приобретенными. В гастроэнтерологии они формируют синдром избирательной и групповой мальабсорбции, в нефрологии – тубулопатии с нарушением реабсорбции и появлением аминоацидурии.

Наследственные патология транспорта аминокислот часто сочетается с генетически опосредуемыми аномалиями нарушения внутриклеточного переноса и гидролиза коротких пептидов и аминокислот (межуточный обмен) и поэтому совокупно еще называются аминоацидопатиями. Суммарная частота аминоацидопатий доходит до 0,5 % популяции. Примером наследственной аминоацидопатии по отдельным аминокислотам являются фенилкетонурия, алкаптонурия, лейциноз, гомоцистинурия, альбинизм, тирозиноз (подробнее см. ниже в разделе «Нарушения межуточного обмена аминокислот»).

Описано около 10 наследственных транспортных аминоацидопатий, в основе которых лежит генетический дефект пермеаз, по сути, представляющих собой разновидность распознающих белков. Доказано, что аминокислоты могут конкурировать за общую транспортную систему. Пять из описанных транспортных аминоацидопатий вызваны аномалиями группоспецифичных пермеаз и нарушают транспорт нескольких близких по строению аминокислот – цистинурия, болезнь Хартнупа, дибазикааминоацидурия, первичный синдром Фанкони. Большинство среди них имеют клинические проявления, а иминоглицинурия – бессимптомна. Другие пять аминоацидопатий (гиперцистинурия, гистидинурия, лизинурия, мальабсорбция триптофана и метионина) являются субстрат-специфичными.

Цистинурия (частота 1/15000) имеет три генокопии и, соответственно, три клинических типа в зависимости от выраженности нарушения кишечного и почечного транспорта. Цистин малорастворим и при концентрации выше 400 мг/л выпадает в осадок. Это формирует образование камней в почках, мочевом пузыре, уретре. Цистинурию следует отличать от цистиноза (первичного тезаурисмоза), при котором нарушено всасывание 16 аминокислот из-за дефекта всех четырех транспортных систем. Главное звено патогенеза – расстройства обмена цистина в лизосомах и нарушение реабсорбции сразу 16 аминокислот. Возможно, от их присутствия в моче не происходит цистинового камнеобразования. В то же время, страдает синтез белка и формируются глубокое физическое отставание, отложение кристаллов цистина в тканях, селезенке, печени. Существует изолированно или в структуре синдрома Фанкони.

Болезнь Хартнупа (частота 1/24000) имеет три генокопии со слабой и сильно выраженной клиникой. Нарушены всасывание и ускоренная экскреция крупномолекулярных аминокислот, в кишечнике увеличено образование производных индола, которые сказываются на функциях кроветворения и нервной системы. Вторично развиваются дефицит триптофана, синтез НАД и картина пеллагры (дерматит, фотосенсибилизация, деменция, мозжечковая атаксия).

При дибазикааминоацидурии (1/60000, распространена среди финнов, франко-канадцев) не реабсорбируются аргинин, орнитин и лизин, но не цистин. Камнеобразование не наблюдается. Развиваются деменция, задержка роста, гипераммониемия.

Мальабсорбция триптофана, как и болезнь Хартнупа, сопровождается образованием в кишечнике производных индола, которые нарушают кроветворение и вызывают поражение нервной системы. Характерна индиканурия и индолфекалия.

Мальабсорбция метиониновая проявляется деменцией, задержкой роста, приступами одышки, судорогами, онкотическими отеками вследствие дефицита этой незаменимой аминокислоты и угнетения синтеза белков. Снижено образование меланина, поэтому пациенты – светлоглазые блондины.

Лизинурия сопровождается судорогами, задержкой психомоторного развития. При гистидинурии нарушаются функции ЦНС, образование гемоглобина. Синдром Фанкони характеризуется усиленным выведение с мочой практически всех аминокислот, а полиурия сочетаются с почечным канальцевым ацидозом, гиперфосфатурией, псевдорахитическим синдромом, глюкозурией.

Возможен конкурентный механизм нарушения транспорта отдельных аминокислот в нефроцитах из-за перегрузки транспортных систем другими аминокислотами и веществами, например, вследствие гипераминоацидемии при аминоацидопатиях. Так, при пролинемии нарушена реабсорбция глицина и оксипролина. Вторичный синдром Фанкони воспроизводится при цистинозе, тирозинемии, галактоземии, фруктозурии, болезни Коновалова-Вильсона.

До трехмесячного возраста трансмембранный перенос аминокислот недостаточен, что вызывает преходящую аминоацидурию новорожденных. У всех грудных детей до трех месяцев существует иминоурия, до шести месяцев – глицинурия.

Нарушения межуточного обмена белков. Патология этого этапа белкового метаболизма проявляется нарушением межуточного (интермедиарного) обмена аминокислот. В норме концентрация свободных аминокислот в плазме 4-8 мг/л. Прием аминокислот с пищей или их внутривенное введение мало влияют на этот показатель. Главными органами, утилизирующими аминокислоты, являются печень и почки. Мозг поглощает аминокислоты избирательно, предпочитая гистидин, глицин, глутаминовую кислоту, тирозин, аргинин, метионин.

Показателем снижения утилизации аминокислот, прежде всего, печенью является гипераминоацидемия. Печень является главным органом белкового метаболизма и выполняет в связи с этим важные функции: переаминирование, дезаминирование, декарбоксилирование аминокислот.

Переаминирование аминокислот – это обратимый перенос их аминогрупп на α-кетокислоты без освобождения аммиака. Смысл переаминтрования состоит в образовании структурно новых заменимых аминокислот. Ключевую роль играет кофермент трансаминаз – витамин В6, посредниками служат глутаминовая и α-кетоглутаровая кислоты, которые используются для переноса аминогруппы между различными кетокислотами. Переаминирование доводит поступающую в печень смесь экзогенных аминокислот до оптимально нужной для организма. Эта адекватная смесь переносится кровью во все органы и ткани. Переаминирование – ключевое звено взаимосвязи белкового метаболизма с жировым и углеводным. Кетокислоты могут возникать из небелковых предшественников, а аминокислоты могут терять аминный азот и превращаться в кетокислоты, после чего через глюконеогенез – в глюкозу. А перед этим углеродные фрагменты аминокислот могут оказаться в составе пирувата, оксалата, α-кетоглутарата (гликогенные аминокислоты) или в составе ацето-ацетата и ацетил-коэнзима А (кетогенная аминокислота лейцин). Как уже упоминалось, полученные продукты дезаминирования используются в глюконеогенезе, образовании кетоновых тел, липидов, включая стероиды. Как правило, В6-зависимое переаминирование (образование глутаминовой кислоты) тесно связано с окислительным дезаминированием, которое осуществляется аминооксидазами печени до аммиака, воды и кетокислот. Равновесно сопряженным с этим процессом происходит восстановительное аминирование с нейтрализацией аммиака и превращением кетокислоты в аминокислоту с присоединением водорода, донором которого выступают витамин В2-зависимые флавиновые ферменты.

Направленность процессов переаминирования и аминирования-дезаминирования зависит от концентраций аминокислот и α-кетокислот, т.е. от нуждаемости организма в энергетической или пластической утилизации.

По причинам нарушения обмена аминокислот могут быть наследственными (аминоацидопатии) и приобретенными. Среди наследственных форм заболеваний выделяют наиболее клинически значимые: фенилпировиноградная олигофрения (аминоацидопатия фенилаланина), или фенилкетонурия, алкаптонурия (нарушен обмен гомогентизиновой кислоты), гомоцистинурия (гомоцистеин и серин), альбинизм (тирозин).

Причины приобретенных нарушений обмена аминокислот. Дефицит витамина В6 нарушает транс- и дезаминирование в печени. Редко бывает его дефицит в пище. Чаще встречаются нарушения, связанные с появлением антагонистов трансаминаз – фтивазида, циклосерина при лечении туберкулеза. Хронический алкоголизм, беременность часто сопровождаются дефицитом витамина В6; транс- и дезаминирование замедляются при недостатке апоферментов трансаминаз во время голодания и нарушении белковосинтетической функции печени (цирроз, стеатоз, гепатиты). Нарушения аминирования и дезаминирования наблюдаются при дефиците витаминов В1, В2, РР, глубокой гипоксии тканей и любом торможении окислительно-восстановительных ферментов цикла Кребса (при этом возникает дефицит α-кетокислот). Приведенные нарушения обмена кислот сопровождаются синдромами гипераминоацидемии, преренальной аминоацидурией и увеличенной потерей немочевинного азота с мочой.

Особое диагностическое значение имеет повышение содержания в плазме крови ферментов аминотрансфераз, что свидетельствует об усиленных процессах цитолиза. Повышение уровня АСАТ (аспартатаминотрансфераза) считается характерным для инфаркта миокарда, АЛАТ (аланинаминотрансфераза) – для острого гепатита. Катаболизм триптофана тормозится при гиповитаминозах В1, В2, В6 и гиперкортицизме, а тирозина – при гипертиреозе, цинге, дефиците меди.

Процессы декарбоксилирования некоторых аминокислот (гистидин, тирозин, триптофан, глутаминовая кислота) приводят к образованию биогенных аминов (гистамина, тирамина, дофамина, серотонина, гамма-аминомасляной кислоты) в основном в печени, мозге, хромаффинных клетках надпочечников. При патологии они синтезируются местно – в очагах воспаления, при повреждениях клеток. В этих условиях организм пытается ограничивать системное действие этих аминов (которые становятся медиаторами воспаления). Например, окислительное дезаминирование гистамина катализирует пиридоксаль-зависимый фермент гистаминаза. Дефицит витамина В6 формирует ослабление гистаминазной активности. Ранний токсикоз у беременных связывают именно с этим механизмом.

Избыток синтеза серотонина из триптофана наблюдается при злокачественных опухолях апудоцитарного происхождения кишечника, бронхов, поджелудочной железы. При нарушении инактивации серотонина в печени развивается карциноидный синдром. Он включает в себя вазомоторные реакции, колебания артериального давления, головные боли, астмоподобный бронхит, усиленную моторику ЖКТ, фибриноз клапанов сердца, эндокарда, аорты, плевральные шварты. Патогенез фибриноза связывают с серотонином, способствующим образованию хининовых производных фибрина, которые не подвергаются фибринолизу.

Наследственные нарушения обмена аминокислот (аминоацидопатии). Актуальность рассмотрения нарушения межуточного обмена аминокислот определяется тем, что эта патология отражается, в первую очередь, на функции нервной системы и является одной из основных причин слабоумия. Знание этой патологии необходимо в практике неонатологов и генетических лабораторий для профилактики и ранней коррекции олигофрении.

Фенилпировиноградная олигофрения (синоним – фенилкетонурия) имеет несколько генокопий в 12 хромосоме (аутосомно-рецессивный тип наследования, заболеваемость 1/10000 населения), признается одной из важнейших причин слабоумия. Наиболее частый механизм заболевания – дефект печеночного фермента фенилаланин-4-гидроксилазы. Вследствие этого фенилаланин не превращается в тирозин, накапливается, тормозит активность тирозиназы и вызывает дефицит тирозиновых и триптофановых производных. Нарушения обмена тирозина и триптофана приводят к дефициту меланина, катехоламинов, серотонина, которые являются нейромедиаторами. У больных развивается слабоумие, гипотензия, тремор, судороги. Кроме того, у них обесцвечиваются кожа, глаза, волосы. В крови и моче повышается содержание продуктов альтернативного пути обмена фенилаланина – фенилпировиноградная, фенилмолочная кислоты, фенилацетилглутамин. Образуются отсутствующие в норме метаболиты фенилэтиламин, ортофенилуксусная кислота, или фенилацетат. Эти соединения рассматриваются как нейротоксины, нарушающие липидный обмен мозга и углубляющие в сочетании с дефицитом нейромедиаторов слабоумие.

Для скрининг-тестов гиперфенилаланинемии в практике неонатологов используют реакцию Феллинга. В моче больного выявляется фенилпируват при окрашивании в зеленый цвет полуторахлористым железом. Содержащийся в моче и поте фенилацетат обусловливает своеобразный мышиный запах. Применяется также микробиологический тест Гатри, при котором выращиваются колонии фенилаланин-зависимого штамма бактерий в крови больного с гиперфенилаланином. При классической форме болезни уровень фенилаланина превышает 16 мг/дл.

Исключение фенилаланина из диеты с первых недель жизни больного и ограничение его до полового созревания – основной метод профилактики прогрессирующего слабоумия. Взрослые могут следовать менее строгой диете. В то же время, беременные женщины, страдающие феникетонурией, должны исключать продукты, содержащие фенилаланин. Признано, что фенилаланин и его метаболиты обладают еще и тератогенным действием.

Другие генные мутации ферментов метаболизма фенилаланина (дигидроптеридинредуктазы, до 10 % случаев болезни) вызывают более злокачественное течение, поскольку не корригируются диетой. Они представлены иными мутантными аллелями фермента фенилгидроксилазы, вызывая его пониженную активность и доброкачественное течение гиперфенилаланинемии без выраженного слабоумия.

Алкаптонурия – аутосомно-рециссивный тип наследования, заболеваемость 1/100000 населения, проявляется поздно (после 30 лет). Патогенез заболевания связывают с дефектом оксидазы (п-оксифенилпируватдезоксигеназы) промежуточных продуктов метаболизма фенилаланина и тирозина – гомогентизиновой кислоты, которая в норме окисляется в почках до малеилацетоуксусной кислоты. Вследствие торможения этого процесса в организме накапливается гомогентизиновая кислота. Под влиянием фермента полифенолоксидазы она превращается в хиноновые полифенолы, составляющие основу «охронозного пигмента» – алкаптона, который окрашивает мочу на воздухе в темный цвет. Проба с хлорным железом окрашивает мочу в голубой цвет. Моча как фотопроявитель окрашивает фотобумагу в черный цвет за счет хиноновых полифенолов. Часть пигмента алкаптона откладывается в хрящевой и соединительной ткани, вызывает кальцификацию, дегенеративный артрит, остеохондропатию. Хрящи скелета, гортани, трахеи, ушей, склеры становятся черными. Радикально болезнь не лечится.

Лейциноз – аутосомно-рецессивный тип наследования. Болезнь описана еще у древнегреческой мумии 3500 лет назад. Патогенез заболевания обусловлен нарушением окислительного декарбоксилирования разветвленных кислот, появляющихся после дезаминирования лейцина, изолейцина и валина. В результате в крови накапливаются кетокислоты и их источники – указанные аминокислоты, особенно лейцин. Лейцин – единственная кетогенная аминокислота, окисляемая в норме до конечных кетоновых тел – ацетоацетат и ацетилкоэнзим-А. Поскольку нормальное использование кетокислот в энергообеспечении мозга крайне затруднено, развивается слабоумие и неврологическая симптоматика, вплоть до летаргия. Нарушение окисления лейцинпроизводных сопровождается кетоацидозом, гипогликемией, гипотонией, расстройством липидного обмена и синтеза миелина. Сходный патогенез и симптоматику имеет другая аминоацидопатия – гипервалинемия, вызванная дефектом валинтрансаминазы. Основным методом лечения является диета с резким ограничением в пище разветвленных аминокислот – лейцина, валина. У некоторых больных с лейцинозом эффективно активируется дефектный фермент под действием больших доз витамина В1.

Гомоцистинурия – скорее синдром, имеющий разную этиологию нарушения обмена серосодержащих аминокислот. В большинстве случаев патогенез заболевания связан с дефектом фермента сериндегидратазы (или цистатион-β-синтетазы). Вследствие этого возникает блок образования цистатиона из гомоцистеина и серина. Заболеваемость 1/200000. В крови накапливаются гомоцистеин, гомоцистин, серин, метион. Поскольку в норме часть метионина переходит в гомоцистеин, с мочой выделяется гомоцистин и другие серосодержащие аминокислоты. Этот генотип гомоцистинурии поддается лечению пиридоксином (витамином В6), который активирует метаболизм гомоцистеина. В качестве синдрома гомоцистинурия наблюдается при любых нарушениях обмена метилкобаламина, который является коферментом другой ферментативной реакции обмена гомоцистина (метилтетрагидрофолат-гомоцистеин-метилтрансфераза). Диагностическим тестом у таких больных является метилмалонилацидурия, как это имеет место при гиповитаминозах по фолиевой кислоте.

Клинические проявления синдрома гомоцистинурии включают в себя слабоумие, эктопию хрусталика, остеоартрозопатии, особенно позвоночника и трубчатых костей, тромбоэмболический синдром. Гомоцистинурия способствует ускоренному развитию атеросклероза (вследствие чрезмерной продукции тромбоцитарных факторов роста гладкомышечными клетками сосудов и повышения чувствительности апо-В-рецепторов сосудов к атерогенным липопротеидам). Обсуждаются вопросы о более значительной роли клинически латентных форм гомоцистинурии и нарушений метаболизма метилированной формы витамина В12 в патогенезе атеросклероза и гипертензий.

Тирозинозы – болезни нарушения обмена тирозина имеют несколько генокопий и носят аутосомно-рецессивный и аутосомно-доминантный типы наследования, сцепленные с полом. Заболеваемость 1/20000 населения. Наиболее распространенной формой заболевания признается альбинизм, описанный еще античными врачами. Наиболее частый механизм заболевания – дефект медьсодержащего фермента меланобластов тирозиназы, блокирующего превращение тирозина в диоксифенилаланин, из которого образуется эпинефрин и меланин. У альбиносов белые кожа и волосы, розово-красные глаза, фотодерматит. Больные страдают фотобоязнью и плохо видят днем вследствие депигментации сетчатки. Нарушение тирозинового обмена приводит к повреждению печени и раннему развитию цирроза.

Поскольку тирозинозы имеют много генокопий и в патогенезе прослеживаются дефекты разных ферментов метаболизма тирозина, то и клинически выделяют и другие формы. Среди них наиболее известны тирозиноз Медеса, гипертирозинемия I и II типов, хоукинсурия. При них тирозинемия с тирозинурией часто сочетаются с печеночной и почечной недостаточностью. Хоукинсурия имеет аутосомно-доминантный тип наследования и характеризуется выраженным слабоумием. Ферментативные дефекты метаболизма тирозина могут сопровождаться нарушением продукции тиреоидных гормонов на основе аминокислоты тирозина. Например, дефект йодтирозиндейодиназы – один из механизмов наследственного гипотиреоза с кретинизмом.

Преходящая тирозинемия с тирозинурией возникает у недоношенных детей вследствие незрелости печеночного фермента гидроксифенилпируватдезоксигеназы. При этом развиваются и нарушения обмена глутатиона, что грозит задержкой психомоторного развития. Терапия аскорбиновой кислотой активирует этот фермент и корригирует патологическое состояние. Кроме представленных аминоацидопатий описаны и другие: гиперпролинемия, гистидинемия, глицинурия, гипераланинемия, гиперлизинемия, триптофанемия. Многие из них сопровождаются нефропатией и задержкой психомоторного развития.

Нарушение синтеза белков. Оно проявляется клинико-патологическими состояниями синтеза аномальных протеинов и количественными нарушениями синтеза белков. По причинам могут быть приобретенными и наследственными. Проявления этого типа патологии представлены синдромами (патологическими состояниями) гипопротеинемии, диспротеинемии, парапротеинемии, описанными в разделе нарушения композиции белков плазмы, или диспротеинемии.

Нарушения конечных этапов обмена белка. Конечные этапы белкового обмена – это вся совокупность превращений, приводящих к формированию экскретируемых из организма терминальных азотсодержащих продуктов – аммиака, мочевины, мочевой кислоты, креатинина, а также сам процесс их экскреции.

Равновесным показателем выведения и образования всех этих продуктов служит уровень остаточного (небелкового) азота сыворотки крови 15-40 мг/дл или 14,3-28,5 ммоль/л, в единицах СИ.

Главная составная часть остаточного азота – мочевина. В норме содержание мочевины в плазме составляет 6-8,5 ммоль/л, аммиака близко к 10-43 мкмоль/л. Высокая скорость его образования и превращения так велики, что делает аммиак важнейшим метаболитом белка. Он высоко токсичен и легко проникает через липидные мембраны. По количеству формируемого аммиака органы можно рассматривать в порядке уменьшения его образования – мозг, печень, ЖКТ. Почки также активный продуцент аммиака – до 6 % от мочевого азота приходится именно на ион аммония.

На месте своего образования в тканях и органах аммиак подлежит немедленной нейтрализации. Это достигается путем аминирования a-кетокислот, прежде всего, a-кетоглутаровой, с образованием глутаминовой кислоты, которая под действием глутаминсинтетазы превращается в глутамин, служащий временным хранилищем нетоксичной формы аммиака. Глутамин образуется в самой печени и испытывает постоянный круговорот между ней и другими органами. Карбамоилфосфат-синтетаза I и II превращает глутаминовую кислоту и глутамин в карбамоилфосфат, который переносит аммиак в системы, синтезирующие аргинин или пиридоксин. Через синтез аргинина лежит путь аммиачного азота к мочевине – конечному выводимому продукту. Подавляющая часть мочевины синтезируется в печени, незначительное ее количество образуется и в мозге.

Весь процесс объединения аммиака с СО2, изложенный выше, обходится печени в значительное количество энергии. Эти расходы оправдываются тем, что в результате ядовитый аммиак становится частью практически нетоксичной мочевины, которая водорастворима и легко выводится почками. Кроме того, 1 % мочевины экскретируется через потовые железы, и 25 % ее диффундирует в кишечник, где она разлагается бактериями с образованием аммиака. У здорового взрослого человека на обычной диете выделяется 25-35 г (333-583 ммоль/л) мочевины в сутки. По последним данным, уремия не является исключительно мочевинным отравлением, а представляет результат совокупного действия на организм более 200 накапливаемых продуктов. Мочевина используется почками для осмотического диуреза, а лейкоцитами – как бактерицидный агент. Не случайно она реабсорбируется здоровыми почками примерно на 1/3 от всей ее фильтрации. Мочевина даже может служить источником пищевого азота.

Тем не менее, накопление карбамида приводит к снижению аммиак-нейтрализующих реакций. В итоге нарушения выведения продуктов азотистого метаболизма (ретенционная гиперазотемия) и процессов нейтрализации аммиака в мочевину (продукционная гиперазотемия) приводят к развитию патогенетической цепи – дефицит метаболитов цикла Кребса (в частности a-кетоглутаровой)–тканевая гипоксия–кома. Главная причина продукционной гиперазотемии – печеночно-клеточная недостаточность, клинически проявляется синдромом печеночной энцефалопатии – нарушения ритма сна и бодрствования, эмоциональная лабильность, изменения ЭЭГ, бред, гиперкинезы. Изменение остаточного азота при продукционной гиперазотемии характеризуется абсолютным и относительным возрастанием его немочевинных фракций. Фракция мочевины в остаточном азоте при этом убывает.

Другая причина продукционной гиперазотемии – усиление катаболизма белков (голодание или перекорм белками). В этом случае содержание азота аминокислот и аминов также повышается, но при нормальной функции почек не происходит его накопления в крови, а относительная доля мочевинного азота снижается. Следует отметить, что продукционная гиперазотемия сопровождается синдромами гипераминоацидемии и преренальной аминоацидурии. Ретенционная гиперазотемия характеризует, прежде всего, почечную недостаточность. При острой почечной недостаточности в анурическую фазу из-за резкого снижения фильтрации растет и содержание остаточного азота, и азота мочевины. При хронической почечной недостаточности прогрессирующий нефросклероз приводит к гибели нефронов и с годами их становится все меньше.

Оставшиеся нефроны оказываются в ситуации, когда скорость клубочковой фильтрации и оттока мочи в них увеличивается до максимума, что ограничивает возможность экскреции всех вырабатываемых азотистых продуктов, так как их концентрация в моче низка. И при хронической почечной недостаточности уремия является неизбежной. Содержание остаточного азота повышается в десятки, сотни раз (до 1-3 моль/л при норме его 14,3-28,6 ммоль/л). Вместе с азотом мочевины растет азот немочевинных азотистых компонентов, в частности аммония, креатинина, мочевой кислоты и пептидов.

Наиболее тяжелое и быстрое повышение остаточного азота свойственно комбинированным нарушениям, когда страдает и печеночная, и почечная функции. Особая форма комбинированного нарушения называется гепато-ренальный синдром, т.е. вторичная почечная недостаточность при первичных болезнях печени. Она осложняет течение острой и хронической печеночно-клеточной недостаточности, острой паренхиматозной желтухи и т.п.

Отдельного рассмотрения заслуживают наследственные нарушения цикла образования мочевины. Выделяют наследственные болезни с дефектами ферментов цитруллинового цикла и блокады их активации. Практически все болезни проявляются от рождения и могут обусловить раннюю смерть больных. Подавляющая часть мочевого азота входит в состав мочевины (в норме 6-18 г азота в сутки) и аммония (0,4-1 г или 10-107 ммоль в сутки). У здоровых индивидов экскретируется также креатинин (0,3-0,8 г в сутки), мочевая кислота (0,08-0,2 г или 1,48-4,43 ммоль в сутки), пептиды (0,3-0,7 г в сутки), аминокислоты (0,08-0,15 г в сутки). При патологии могут нарушаться и процессы экскреции немочевинных компонентов мочевого азота – гуанидиновые соединения (креатин, креатинин, гуанидины, метил- и диметилгуанидин), ураты, алифатическме амины, производные ароматических аминокислот – триптофана, тирозина, фенилаланина.

Креатинин – форма креатина, производного аминокислот глицина и аргинина, который образуется в результате переаминирования через гуанидинуксусную кислоту. В норме уровень креатинина в сыворотке составляет 1-1,7 мг% или для мужчин 44-150 мкмоль/л и 44-97 мкмоль/л для женщин. Креатин образуется в печени, мышцах, миокарде, фильтруется и почти полностью реабсорбируется. Креатинин фильтруется и секретируется практически без реабсорбции. Креатинурия характерна для новорожденных и беременных. У взрослых креатина мало. Увеличение выведения креатина с мочой происходит при мышечной атрофии, миодистрофиях, миастении, миозитах. При сахарном диабете имеется креатинурия и креатининурия. При почечной недостаточности прогрессивно нарастающий креатинин наряду с другими немочевинными азотсодержащими продуктами является вероятным претендентом на роль эндотоксинов.
1   2   3   4   5   6   7   8   9   ...   24

перейти в каталог файлов
связь с админом