Главная страница
qrcode

Закон Ома


Скачать 199.9 Kb.
НазваниеЗакон Ома
Дата07.04.2019
Размер199.9 Kb.
Формат файлаdocx
Имя файлаКВ 18.docx
ТипЗакон
#61859
Каталог

  1. По каким формулам расчитываются реактивные сопротивления конденсатора и катушки в цепи переменного тока?

Известный в электротехнике закон Ома объясняет, что если по концам какого-то участка цепи приложить разность потенциалов, то под ее действием потечет электрический ток, сила которого зависит от сопротивления среды.

Источники переменного напряжения создают ток в подключенной к ним схеме, который может повторять форму синусоиды источника или быть сдвинутым по углу от него вперед либо назад. 

img_256

Реактивное сопротивление катушки

Возьмем источник стабилизированного переменного напряжения и отрезок длинной изолированной проволоки. Вначале подключим генератор на всю расправленную проволоку, а затем на ее же, но смотанную кольцами вокруг магнитопровода, который используется для улучшения прохождения магнитных потоков.

Точно замеряя в обоих случаях ток, можно заметить, что при втором эксперименте будет замечено значительное снижение его величины и отставание по фазе на определенный угол.

Это происходит за счет возникновения противодействующих сил индукции, проявляющихся под действием закона Ленца. 

img_256

На рисунке прохождение первичного тока показано красными стрелками, а создаваемое им магнитное поле — синими. Направление его движения определяется по правилу правой руки. Оно же пересекает все соседние витки внутри обмотки и индуцирует в них ток, показанный зелеными стрелками, который ослабляет величину приложенного первичного тока, одновременно сдвигая его направление по отношению к приложенной ЭДС.

Чем большее число витков намотано на катушке, тем сильнее создается индуктивное сопротивление XL, уменьшающее первичный ток.

Его величина зависит от частоты f, индуктивности L, рассчитывается по формуле:

XL= 2πfL = ωL

За счет преодоления сил индуктивности ток на катушке отстает от напряжения на 90 градусов.

Реактивное сопротивление конденсатора

Конструктивно в его состав входят две или несколько токопроводящих пластин, отделенных слоем материала, обладающего диэлектрическими свойствами. За счет этого разделения постоянный ток не может пройти через конденсатор, а переменный — способен, но с отклонением от первоначальной величины. 

img_256

Ее изменение объясняется принципом работы реактивного — емкостного сопротивления.

Под действием приложенного переменного напряжения, изменяющегося по синусоидальной форме, на обкладках происходит всплеск, накопление зарядов электрической энергии противоположных знаков. Общее их количество ограничено габаритами устройства и характеризуется емкостью. Чем она больше, тем дольше времени идет заряд.

В течение следующего полупериода колебания полярность напряжения на обкладках конденсатора меняется на противоположное. Под его воздействием происходит смена потенциалов, перезарядка сформированных зарядов пластин. Таким способом создается протекание первичного тока и противодействие его прохождению, когда он уменьшается по величине и сдвигается по углу.

По этому вопросу у электриков есть шутка. Постоянный ток на графике представлен прямой линией и когда он идет по проводу, то электрический заряд, дойдя до обкладки конденсатора упирается в диэлектрик, попадая в тупик. Эта преграда не дает ему пройти. 

Синусоидальная же гармоника идет переваливаясь через препятствия и заряд, свободно перекатившись через нарисованные обкладки, теряет небольшую часть энергии, которая зацепилась за пластины.

У этой шутки есть скрытый смысл: при подаче на обкладки постоянного или выпрямленного пульсирующего напряжения между пластинами за счет накопления ими электрических зарядов создается строго постоянная разность потенциалов, которая сглаживает все скачки питающей цепи. Это свойство конденсатора увеличенной емкости используется в стабилизаторах постоянного напряжения. 

В общем, емкостное сопротивление Xc или противодействие прохождению через него переменному току зависит от конструкции конденсатора, определяющей емкость «С», и выражается формулой:

Хс = 1/2πfC = 1/ωC

За счет перезарядки обкладок ток через конденсатор опережает напряжение на 90 градусов.


  1. Как записывается закон Ома для последовательной RLC-цепи переменного тока? Как его можно получить с помощью векторных диаграмм?

img_256

Соотношения (*) выражают закон Ома для участка цепи переменного тока, содержащего один из элементов R, L и C. Физические величины R, img_256 и ωL называются активным сопротивлением резистора, емкостным сопротивлением конденсатора и индуктивным сопротивлением катушки.


Согласно закону сохранения электрического заряда, в любой момент времени ток во всех частях данной цепи одинаков, так отложим же векторы токов, построим векторную диаграмму токов:

img_256img_256

Пусть в направлении оси Х будет отложен ток Im – амплитудное значение тока в цепи. Напряжение на активном сопротивлении совпадает по фазе с током, значит эти векторы будут сонаправленными, отложим их из одной точки.

img_256

Напряжение на конденсаторе отстает на π/2 от тока, следовательно откладываем его под прямым углом вниз, перпендикулярно вектору напряжения на активном сопротивлении.

img_256

Напряжение на катушке опережает на π/2 ток, следовательно откладываем его под прямым углом вверх, перпендикулярно вектору напряжения на активном сопротивлении. Допустим, что для нашего примера UL>UC.

Поскольку мы имеем дело с векторным уравнением, сложим векторы напряжений на реактивных элементах, и получим разницу. Она будет для нашего примера (мы приняли что UL>UC) направлена вверх.

img_256

Прибавим теперь вектор напряжения на активном сопротивлении, и получим, по правилу векторного сложения, вектор суммарного напряжения. Так как брали максимальные значения, то и получим вектор амплитудного значения общего напряжения.

img_256

Так как ток менялся по закону косинуса, то напряжение тоже меняется по закону косинуса, но со сдвигом фаз. Между током и напряжением есть постоянный сдвиг фаз. 


  1. Как объяснить, что сумма амплитудных напряжений на элементах колебательного контура больше полного напряжения на контуре?

Индуктивное и емкостное сопротивления, соединенные последовательно, вызывают в цепи переменного тока меньший сдвиг фаз между током и напряжением, чем если бы они были включены в цепь по отдельности.

Иначе говоря, от одновременного действия этих двух различных по своему характеру реактивных сопротивлений в цепи происходит компенсация (взаимное уничтожение) сдвига фаз.

Полная компенсация, т. е. полное уничтожение сдвига фаз между током и напряжением в такой цепи, наступит тогда, когда индуктивное сопротивление окажется равным емкостному сопротивлению цепи, т. е. когда XL = ХС или, что то же, когда ωL = 1 / ωС.

Цепь в этом случае будет вести себя как чисто активное сопротивление, т. е. как будто в ней нет ни катушки, ни конденсатора. Величина этого сопротивления определится суммой активных сопротивлений катушки и соединительных проводов. При этом действующее значение тока в цепи будет наибольшим и определится формулой закона Ома I = U / R, где вместо Z теперь поставлено R.

Одновременно с этим действующие напряжения как на катушке UL = IXL так и на конденсаторе Uc = IХС окажутся равными и будут максимально большой величины. При малом активном сопротивлении цепи эти напряжения могут во много раз превысить общее напряжение U на зажимах цепи. Это интересное явление называется в электротехнике резонансом напряжений.

img_256Следует твердо помнить, что сопротивления XL и ХС являются переменными, зависящими от частоты тока, и стоит хотя бы немного изменить частоту его, например, увеличить, как XL = ωLвозрастет, а ХС = = 1 / ωС уменьшится, и тем самым в цепи сразу нарушится резонанс напряжений, при этом наряду с активным сопротивлением в цепи появится и реактивное. То же самое произойдет, если изменить величину индуктивности или емкости цепи.

При резонансе напряжений мощность источника тока будет затрачиваться только на преодоление активного сопротивления цепи, т. е. на нагрев проводников. 


  1. Чем обусловлено активное сопротивление катушки индуктивности, содержащей ферромагнитный сердечник?

У катушки с сердечником помимо омического сопративления(Омическое сопротивление – это сопротивление цепи постоянному току вызывающее безвозвратные потери энергии постоянного тока.) появляется дополнительно потери в сердечнике. В сердечнике ВСЕГДА есть потери - вихревые токи (если это сталь, даже трансформаторная сталь) , потери на перемагничивание, магнитострикционные потери.. . А потери мощности ВСЕГДА являются активными, а не реактивными. Значит, им можно поставить в соответствие некоторое АКТИВНОЕ сопротивление. И поскольку, что очевидно, эти потери могут только добавляться к потерям на омическом сопротивлении самой катушки, то это эквивалентное сопротивление и получается подключённым параллельно.

(при определении общего сопротивления внешней цепи нужно складывать ее реактивное и активное сопротивления. Но складывать эти два различных по своему характеру сопротивления нельзя.

В этом случае полное сопротивление цепи переменному току находят путем геометрического сложения.

Строят прямоугольный треугольник (см. рисунок 1) одной стороной которого служит величина индуктивного сопротивления, а другой - величина активного сопротивления. Искомое полное сопротивление цепи определится третьей стороной треугольника.

Полное сопротивление цепи обозначается латинской буквой Z и измеряется в омах. Из построения видно, что полное сопротивление всегда больше индуктивного и активного сопротивлений, отдельно взятых.

Алгебраическое выражение полного сопротивления цепи имеет вид: где Z — общее сопротивление, R — активное сопротивление, XL — индуктивное сопротивление цепи.

Закон Ома для такой цепи выразится формулой I = U / Z,где Z — общее сопротивление цепи.)


  1. В чем состоит резонанс напряжений? При каких условиях он возникает? Что Вы можете сказать о напряжении на различных участках колебательного контура при резонансе?

Условие резонанса — это равенство величин реактивных сопротивлений катушки индуктивности и ёмкости

Условием возникновения резонанса является равенство частоты источника питания резонансной частоте w=wр, а следовательно и индуктивного и емкостного сопротивлений xL=xC. Так как они противоположны по знаку, то в результате реактивное сопротивление будет равно нулю. Напряжения на катушке UL и на конденсаторе UC будет противоположны по фазе и компенсировать друг друга. Полное сопротивление цепи при этом будет равно активному сопротивлению R, что в свою очередь вызывает увеличение тока в цепи, а следовательно и напряжение на элементах.

При резонансе напряжения UC и UL могут быть намного больше, чем напряжение источника, что опасно для цепи.



С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.



Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту 



Исходя из записанного уравнения, можно сделать вывод, что резонанса в колебательном контуре можно добиться изменением частоты тока источника (частота вынужденных колебаний) или изменением параметров катушки L и конденсатора C.

Следует знать, что в последовательной RLC-цепи, обмен энергией между катушкой и конденсатором осуществляется через источник питания.

Последовательным колебательным контуром называют такую цепь, в которой катушка и конденсатор соединены последовательно относительно входных зажимов (рис. 2.14). В такой цепи можно наблюдать резонанс напряжений. При резонансе напряжений индуктивное и емкостное сопротивления взаимно компенсируются и в результате этого реактивные сопротивление и мощность цепи равны нулю.

При резонансе напряжений, возникающем в цепи с последовательным соединением индуктивных и емкостных элементов, ток и напряжение цепи совпадают по фазе. В этом случае угол сдвига фаз между током и напряжением равен нулюи полное сопротивлениецепи равно ее активному сопротивлению. 

Условием резонанса напряжений является равенство частот генератора и контура f = fo, или равенство индуктивного и емкостного сопротивлений для тока генератора: xL = хC.


  1. Что такое добротность колебательного контура? От чего она зависит? Как зависит ширина резонансной линии колебательного контура от его добротности?

Отношение напряжения на индуктивности или на емкости к напряжению, приложенному к цепи при резонансе, называют добротностью контура или коэффициентом резонанса

Откуда

Коэффициент резонанса показывает во сколько раз напряжение на индуктивных или емкостных элементах при резонансе больше, чем напряжение, приложенное к цепи. Добротностью контура называют также отношение характеристического сопротивления контура P к его активному сопротивлению r. Так как характеристическое сопротивление обычно составляет в среднем сотни Ом, а сопротивление r — несколько Ом, то добротность колебательных контуров, состоящих из индуктивных катушек и конденсаторов, находится в пределах 200-500.

Добротность зависит от потерь энергии в контуре, которые вызваны нагревом проводов, потерями в конденсаторе и катушке индуктивности, а также излучением электромагнитных волн в окружающую среду.

  1. Как сдвинуты по фазе колебания переменного тока в контуре и напряжение на клеммах генератора при резонансе, а также при v > vр и v < vр?

Амплитуда силы тока при заданном напряжении на клеммах генератора зависит от частоты вынужденных колебаний ω, сопротивления резистора R, индуктивности катушки L и электроемкости конденсатора C.

Если изменять частоту колебаний при неизменных параметрах Um, R, L и C, то можно найти такую частоту, при которой и амплитуда тока принимает наибольшее значение. Частота называется резонансной частотой. Эта частота соответствует собственной частоте колебаний в LC-контуре. Заметим, что при неизменной частоте переменного тока достигнуть условий резонанса в колебательном контуре можно, изменяя индуктивность L или электроемкость C.
перейти в каталог файлов


связь с админом