Главная страница
qrcode

Комплексные соединения


Скачать 330.5 Kb.
НазваниеКомплексные соединения
АнкорЛекция №8 Комплексные соединения.doc
Дата18.10.2017
Размер330.5 Kb.
Формат файлаdoc
Имя файлаЛекция №8 Комплексные соединения.doc
ТипДокументы
#27881
страница1 из 3
Каталог
  1   2   3

КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Представления о комплексных (координационных) соединениях возникли в связи с необходимостью объяснить строение веществ, в которых повышение числа связей (валентности) у некоторых ионов или атомов не сопровождалось увеличением заряда или степени окисления. Важнейшую роль в химии координационных соединений сыграла теория, созданная в 1893 г. швейцарским химиком А. Вернером.

Дальнейшее развитие теория комплексных соединений получила уже в 20-м веке. Это было обусловлено тем, что к разряду комплексных стали относить соединения, которые ранее традиционно считались простыми. Так, до настоящего времени нет четкой границы между комплексными соединениями и двойными солями или кристаллогидратами.

Другой причиной для более детального изучения комплексных соединений послужили работы Шварценбаха и Пршибила. Предло-женный ими метод комплексонометрии  титриметрический метод анализа, основанный на образовании устойчивых комплексных соединений металлов  нашел широкое применение в химическом анализе.

Наконец, следует отметить, что комплексные соединения играют большую роль и в биохимических процессах. Действительно, гемоглобин, хлорофилл, витамин B12 и многие другие биологически важные соединения относятся к разряду комплексных.

Последнее особенно важно: будущему врачу необходимо четко представлять химизм протекающих в организме человека процессов, в большинстве из которых участвуют комплексные соединения.

Строение комплексных соединений

Как уже отмечалось, первые представления о строении комплекс-ных соединений были предложены А. Вернером. Несмотря на то, что некоторые позиции этой теории не отвечают современным представлениям о строении атома и химической связи, ее основные положения актуальны и в настоящее время.

Основу координационной теории Вернера составляют следующие положения:

1. Комплексное соединение всегда содержит центральный атом или ион, который называется комплексообразователем.

В качестве комплексообразователя могут выступать атомы металлов (например, Fe, Co), ионы металлов (Fe2+, Cr3+ и др.), а также атомы и ионы неметаллов (Si+4, I).

2. Комплексообразователь окружен лигандами (от лат. ligare  присоединять), в качестве которых могут выступать отрицательно заряженные ионы (Вr, NO2, CN) и нейтральные молекулы (Н2О, CO, NH3).

Важной характеристикой лиганда является его дентатность  число химических связей, которые лиганд может образовать с комплексообразователем.

Лиганды, которые могут образовывать с комплексообразователем только одну связь, называют монодентатными. К числу моноден-татных лигандов относят все галогенид-ионы, ионы NO2, CN, SCN и др., а также нейтральные молекулы Н2О, NH3, CO и др.

Лиганды называют бидентатными, если они могут образовывать две связи с комплексообразователем: С2О42, СО32, S2О32 и др.

Лиганды, способные образовывать несколько связей с комплексо-образователем, называют полидентатными. К их числу относят, например, ЭДТА (1,2-бис[ди(карбоксиметил)амин] или этиленди-аминтетрауксусная кислота) и другие органические соединения.

Некоторые многоатомные лиганды могут образовывать химичес-кие связи с комплексообразователем посредством разных атомов. Такие лиганды называются амбидентатными. Таковыми являются, например, анионы NCS, CN, NO2. Так, тиоцианат-анион в зависимости от природы комплексообразователя может быть связан с ним либо через атом азота M  NCS, либо через атом серы M  SCN.

3. Комплексообразователь и лиганды составляют внутреннюю сферу комплекса, образуя комплексный ион: [Fe(CN)6]3 или моле-кулу: [Ni(CO)4]. Внутреннюю сферу принято заключать в квадратные скобки.

Комплексный ион может быть заряжен как положительно (комплексный катион), например, [Ag(NH3)2]+; так и отрицательно (комплексный анион), например, [Al(OH)6]3.

4. Ионы, которые находятся за пределами внутренней сферы, образуют внешнюю сферу комплексного соединения. В нее могут входить как положительно заряженные ионы (H+, Na+, K+), так и отрицательно заряженные ионы (Cl, SO42), а также нейтральные молекулы, например, H2O.

Соединение

Внешняя сфера

Внутренняя сфера

H2[SiF6]

2H+

[SiF6]2

(комплексный анион)

[Cu(NH3)4]SO4

SO42–

[Cu(NH3)4]2+

(комплексный катион)

В настоящее время развиты и другие представления о комплек-сных соединениях, однако все эти теории имеют определенные недостатки и ни одна из них не дает исчерпывающего определения ввиду большого многообразия комплексных соединений. Действи-тельно, среди комплексных соединений встречаются как электро-литы: соли ([Cu(NH3)4]SO4, K2[HgI4]) основания ([Ag(NH3)2]OH) и кислоты (H[AuCl4]), так и неэлектролиты: [Fe(CO)5].

Мы остановимся на следующих определениях:

Комплексными называются соединения, в узлах кристаллической решетки которых находятся комплексные молекулы или ионы, способные к существованию в растворе.

Сложные соединения, у которых имеются ковалентные связи, образованные по донорно-акцепторному механизму, получили название комплексных.

Основные характеристики комплексных соединений

1. Заряд комплексного иона численно равен, но противопо-ложен по знаку сумме зарядов ионов во внешней сфере комплекса.

Так, в соединении K4[Fe(CN)6] заряд внешней сферы равен 4(+1) = +4, следовательно заряд внутренней сферы равен 4.

2. Заряд комплексообразователя определяют из алгебраической суммы зарядов ионов во внутренней сфере комплекса.

Так, в соединении К3[Fe(CN)6] заряд комплексного аниона равен 3 и представляет собой сумму зарядов ионов во внутренней сфере. Заряд цианид-ионов равен 1. Если обозначить заряд комплексо-образователя, т. е., иона железа, как х, тогда х + 6∙(1) = 3 и х = +3.

Таким образом, заряд комплексообразователя равен +3, т. е., Fe3+.

3. Координационное число (к.ч.) комплексообразователя отражает число связей, которые комплексообразователь образует с лигандами.

Соединение

Координационное число

[Ag(NH3)2]Cl

2

[Pt(NH3)2Cl2]SO4

4

K[Al(OH)4(H2O)2]

6

Координационное число может варьировать в пределах от 2 до 12. Наиболее распространенными координационными числами являются 4 и 6.

Координационное число определяется природой комплексообра-зователя и лигандов, а также внешними условиями:

1) Чем больше размер комплексообразователя, тем выше его к.ч.

Соединение

Координационное число

[BF4]

4

[AlF6]3

6

2) Чем меньше размер лиганда, тем выше к.ч. комплексообра-зователя.

Соединение

Координационное число

[AlCl4]

4

[AlF6]3

6

3) Чем больше заряд (степень окисления) комплексообра-зователя, тем выше его к.ч.

Соединение

Степень окисления

Координационное число

[Ag(NH3)2]Cl

+1

2

[Cu(NH3)4]SO4

+2

4

[Cr(H2O)6]Cl3

+3

6

В большинстве случаев выполняется правило:

Координационное число комплексообразователя вдвое превы-шает его заряд.

4) С ростом температуры к.ч. понижается.

Классификация комплексных соединений

I. Классификация по заряду комплексных ионов.

Название

Состав

Пример

1. Катионные

имеют в составе

комплексный катион

[Cu(NH3)4]SO4

2. Анионные

имеют в составе

комплексный анион

H2[PtCl4]

3. Нейтральные

состоят только из внутренней сферы и не имеют внешней сферы

[Pt(NH3)2Cl2]

4. Катионно-анионные

имеют в составе комплексный катион и комплексный анион

[Cu(NH3)4][PtCl4]

II. Классификация по природе лигандов.

Название

Лиганды

Пример

1. Аквакомплексы (гидраты)

H2O

[Cu(H2O)6]Cl2

2. Аммиакаты (аммины)

NH3

[Cu(NH3)4]SO4

3. Гидроксокомплексы

OH

K2[Zn(OH)4]

4. Ацидокомплексы

кислотный остаток

(NO2, С2О42 и др.)

K4[Fe(CN)6]

K2[HgI4]

5. Смешанные

различные

[Co(NH3)4Cl2]Cl

6. Хелатные

би- и полидентатные

[Co(NH2CH2CH2NH2)3]Cl3

Природа химической связи в комплексных соединениях

Многообразие комплексных соединений ставит перед исследо-вателями вопросы о специфике взаимодействий между комплексо-образователем и лигандами, в результате которых во внутренней сфере комплекса могут быть прочно связаны различные по химичес-кой природе ионы или молекулы. Было предложено множество теорий, большинство из которых в настоящее время представляет интерес только для истории. На наш взгляд, естественным было создание и развитие теории строения комплексных соединений на основе теории образования химической связи.

Рассмотрим образование комплексных соединений с точки зрения теории валентных связей.

Теория валентных связей основывается на представлении о двухэлектронной химической связи. Такая связь может быть образо-вана путем объединения неспаренных электронов, находящихся на орбиталях разных атомов. В таком случае она называется ковалентной. Иной механизм образования двухэлектронной связи реализуется в случае, когда один атом предоставляет пустую орбиталь (акцептор), а другой  неподеленную электронную пару (донор). В данном случае говорят об образовании ковалентной связи по донорно-акцепторному механизму. Такую связь еще называют координационной.

В большинстве случаев связь между комплексообразователем и лигандами осуществляется по донорно-акцепторному механизму. Так, в образовании комплексного иона [Cr(NH3)6]3+ участвуют 3d, 4s и 4p орбитали иона Cr3+:




3d




4s




4p

Cr3+





























••


NH3

которые взаимодействуют с неподеленными электронными парами аммиака, образуя комплексный ион [Cr(NH3)6]3+:




3d




4s




4p

[Cr(NH3)6]3+




























Таким образом, химические связи образуются путем передачи части электронной плотности аммиака на вакантные орбитали Cr3+. Видно, что в процессе участвуют различные подуровни комплексо-образователя. Это означает, что образованные связи с лигандами должны иметь различные характеристики, в частности, прочность. Однако экспериментальные результаты свидетельствуют об обрат-ном: прочность всех связей одинакова.

Это противоречие удалось устранить при помощи понятия о гибридизации орбиталей. Гибридизация заключается в том, что все электронные орбитали комплексообразователя, участвующие в обра-зовании связей, становятся совершенно одинаковыми, за исключе-нием их направлений. Гибридизованные орбитали вытягиваются по направлению к лигандам, что способствует большему перекрыванию с орбиталями лигандов, т.е. способствует упрочению связей.

В рассмотренном случае гибридизации подвергаются две d-орбитали, одна s-орбиталь и три p-орбитали иона Cr3+. Такой тип гибридизации называют d2sp3-гибридизация.

Тип гибридизации орбиталей комплексообразователя определяет его координационное число и общую геометрию комплексного соединения. Некоторые примеры типов гибридизации орбиталей и соответствующие им пространственные конфигурации связей приведены в табл. 1.

Таблица 1. Некоторые типы гибридизации орбиталей.

Тип гибридизации

Координа-ционное число

Пространственная

конфигурация связей

Пример

sp

2

Линейная

[Ag(CN)2]

sp2

3

Треугольник

[HgI3]

sp3

4

Тетраэдр

[NiCl4]2

sp2d

4

Квадрат

[Pt(NH3)4]+

sp3d

5

Тригональная бипирамида

[Fe(CO)5]

sp3d2

6

Октаэдр

[Co(NH3)6]3+

Представления о гибридизации орбиталей позволяют объяснить повышенную координацию некоторых комплексообразователей. Так, ион Co3+ имеет следующую конфигурацию внешнего электронного уровня:




3d




4s




4p

Co3+




























Видно, что у иона Co3+ имеются 4 вакантные орбитали. Это означает, что максимальное число связей с лигандами у иона Co3+ не может быть больше четырех. Однако известны случаи, когда ион Co3+ координирует вокруг себя до шести лигандов.

Повышение координации иона Co3+ объясняется тем, что в результате гибридизации орбиталей происходит спаривание электро-нов d-подуровня. При этом конфигурация внешнего электронного уровня иона Co3+ принимает вид :




3d




4s




4p

Co3+




























Видно, что число вакантных орбиталей увеличилось от 4 до 6.

Теория валентных связей позволяет заключить:

1) Самую большую группу комплексообразователей образуют d- и f-элементы в разнообразных степенях окисления. Реже встречаются комплексные соединения, в которых комплексообразователями являются s- и p-элементы (например, щелочные и щелочно-земельные металлы) и ионы с отрицательным зарядом (например, I).

2) Связь лигандов с комплексообразователем является ковалент-ной и осуществляется по донорно-акцепторному механизму.

3) Ионы внешней сферы образуют с комплексными ионами преимущественно ионные связи и компенсируют заряд внутренней сферы.
  1   2   3

перейти в каталог файлов


связь с админом