Главная страница
qrcode

Теоретический материал Клеточные мембраны Мембраны


Скачать 173.33 Kb.
НазваниеТеоретический материал Клеточные мембраны Мембраны
Дата02.10.2019
Размер173.33 Kb.
Формат файлаdocx
Имя файлаТеоретический материал Клеточные мембраны.docx
ТипДокументы
#65454
страница9 из 9
Каталог
1   2   3   4   5   6   7   8   9

Теория: Мейоз


Мейоз

Известно три типа мейоза, которые отличаются местом в жизненном цикле организмов, обеспечивая редукцию числа хромосом и переход либо к диплофазе, либо к гаплофазе:

1. Зиготный (начальный) мейоз происходит сразу же после оплодотворения, с первыми делениями зиготы. Он обнаружен у многих водорослей и простейших. В жизненном цикле этих организмов преобладает гаплофаза, а диплофаза занимает небольшой период времени, пока существует зигота.

2. Гаметный (конечный) мейоз наблюдается у животных, а также у некоторых простейших и водорослей. В этом случае мейоз происходит во время гаметогенеза, а гаплофазе соответствуют гаметы − яйцеклетки и сперматозоиды.

3. Споровый (промежуточный) мейоз характерен для растений. В их жизненном цикле происходит чередование поколений спорофита, который размножается спорами, и гаметофита, который размножается половым путем с помощью гамет. Мейоз происходит в клетках диплоидного спорофита в процессеспорогенеза, в результате которого образуются споры с гаплоидным числом хромосом. Они развиваются без оплодотворения в гаметофит, продуцирующий гаметы, слияние которых в зиготу опять дает начало диплоидному спорофиту. Таким образом, у растений спорофит соответствует диплофазе (диплонту), а гаметофит – гаплофазе

Несмотря на различное место мейоза в жизненном цикле растений, животных, простейших и других организмов его морфологические проявления однотипны у всех эукариот. Мейоз состоит из двух последовательных клеточных делений, которые напоминают митоз.

Первое деление мейоза (мейоз I) обеспечивает редукцию числа хромосом в два раза и называется редукционнымВторое деление (мейоз II) превращает сестринские хроматиды в самостоятельные хромосомы аналогично митозу и называется эквационным (выравнивающим).

Перед началом мейоза клетка проходит все периоды клеточного цикла – G1, S и G2. Предмейотическая интерфаза имеет, однако, особенности, которые связаны с подготовкой клетки к мейозу. В частности, в предмейотической интерфазе обнаружены изменения состава гистонов и других белков хроматина, не характерные для митотической интерфазы.

Каждое из двух делений мейоза состоит из четырех последовательных фаз -профазыметафазы, анафазы и телофазы. Между двумя делениями мейоза клетка некоторое время находится в состоянии, внешне сходном с интерфазой, но оно не сопровождается удвоением ДНК. Пауза между мейозом I и II обозначается какинтеркинез.

Самой длительной фазой мейоза является профаза I. Именно в ней происходят процессы, обеспечивающие редукцию числа хромосом.

Профазу I подразделяют на пять стадий:
• лептотену, или стадию тонких нитей;

• зиготену, или стадию слияния нитей;

• пахитену, или стадию толстых нитей;

• диплотену, или стадию двойных нитей;

• диакинез, или стадию расхождения нитей.

Лептотена внешне напоминает раннюю профазу митоза. Однако в отличие от профазы митоза хромосомы на стадии лептотены значительно тоньше и длиннее, что не позволяет различить в них сестринские хроматиды. По всей длине мейотических хромосом располагаются небольшие утолщения – хромомеры. Число, размеры и расположение хромомеров специфично для каждой хромосомы. Количество хромомеров видоспецифично: у тритона их около 2500, у сверчка – около 200, у риса – 645.

Мейотические хромосомы располагаются в объеме ядра закономерным образом, контактируя теломерами с нуклеолеммой. У отдельных животных они могут формировать структуру, напоминающую букет. Такая структура состоит из сближенных между собой дугообразно изогнутых хромосом, связанных теломерными концами с ограниченным участком нуклеолеммы. У некоторых растений хромосомы в конце лептотены собираются в клубок, что обозначается термином “синезис”. В лептотене начинается процесс конъюгации гомологичных хромосом – синапсис. Он заключается в сближении гомологичных хромосом диплоидного набора в пространстве ядра. При этом хромомеры одной гомологичной хромосомы оказываются напротив соответствующих хромомеров другой гомологичной хромосомы.

Зиготена отличается от лептотены формированием комплексов конъюгирующих хромосом – бивалентов. Каждый бивалент состоит из четырех хроматид – двух сестринских и двух несестринских. Сестринские хроматиды связаны в биваленте центромерами, а несестринские хроматиды соединяются особой белковой структурой – синаптонемальным комплексом.

Синаптонемальный комплекс имеет ширину 160−240 нм и состоит из трех слоев: два одинаковых латеральных слоя толщиной по 30−60 нм располагаются на расстоянии 60−120 нм друг от друга, а между ними находится центральный элемент толщиной 10−40 нм. Латеральные слои контактируют с несестринскими хроматидами.

Формирование бивалента начинается на теломерных концах хромосом, связанных с нуклеолеммой, а также в центромерных районах. Затем объединяются и остальные участки двух гомологичных хромосом. Образование синаптонемального комплекса происходит при сближении хромосом на расстояние около 100 нм, причем структурные компоненты его взаимодействуют между собой наподобие застежки “молния”.

В зиготене синтезируется небольшое количество ДНК (z-ДНК), которая состоит из распределенных по всей длине хромосом уникальных последовательностей длиной 5−10 тыс. пар нуклеотидов. У соматических клеток z-ДНК, составляющая около 0,3 % всей ДНК клетки, реплицируется совместно с остальной ДНК в S-периоде клеточного цикла. Подавление синтеза ДНК в зиготене приводит к отмене конъюгации гомологичных хромосом. Предполагается, что z-ДНК участвует во взаимном распознавании гомологичных хромосом при формировании бивалента.

Пахитена отличается максимальной конденсацией хромосом в составе бивалента. При этом они становятся настолько короткими и толстыми, что бивалент можно принять за одну хромосому. Число пахитенных хромосом-бивалентов равно гаплоидному числу хромосом данного вида. Иногда пахитенные хромосомы могут закручиваться относительно друг друга (соотносительное закручивание). Начинается процесс взаимного обмена участками между гомологичными хромосомами – кроссинговер. Поскольку одна из гомологичных хромосом в биваленте происходит от матери, а вторая – от отца, в ходе кроссинговера происходит формирование генетически новых вариантов хромосом, сочетающих в себе аллели обоих родителей. В результате кроссинговера мейоз будет порождать кроссоверные гаметы, которые увеличивают наследственную изменчивость потомства. В пахитене наблюдается незначительный репаративный синтез ДНК.

Пахитенные хромосомы часто имеют опушенность, которая связана с деконденсацией некоторых хромомеров. Деконденсация хромомеров на стадии пахитены является морфологическим проявлением активации генов, контролирующих дифференцировку гамет.

Диплотена называется так потому, что на этой стадии начинается отталкивание гомологичных хромосом друг от друга, и они становятся различимы в составе бивалента. Отталкивание хромосом начинается в центромерных районах и распространяется вдоль бивалента. При этом становятся заметными места взаимного перекреста гомологичных хромосом – хиазмы. В диплотене хромосомы еще больше конденсируются, в результате чего в биваленте происходит обособление хроматид. В микросокопе видно, что в образование хиазм вовлекаются только две хроматиды из четырех. При отталкивании хромосом происходит деструкция синаптонемального комплекса, его участки сохраняются только в хиазмах.

На стадии диплотены в ооцитах амфибий и насекомых хромосомы приобретают вид “ламповых щеток”. Поверхность хромосом этого типа покрыта петлями из хроматиновых нитей, которые выходят из хромомеров. На петлях хроматина транскрибируется большое количество долгоживущей иРНК, которая используется для синтеза белков, необходимых на ранних этапах эмбриогенеза.

Диакинез принципиально не отличается от диплотены. В нем происходит дальнейшее уменьшение числа хиазм, укорочение бивалентов и растворение ядрышек. Биваленты удаляются друг от друга, располагаясь по периферии ядра. В конце диакинеза гомологичные хромосомы остаются скрепленными в биваленте только терминальными хиазмами. При этом биваленты образуют характерные фигуры в форме крестов, колец, восьмерок или коротких скрученных веревок в зависимости от длины хромиосомы и числа хиазм. Диакинез завершается образованием веретена деления и распадом ядрышка, ядерной оболочки.

Метафаза I начинается с перемещения бивалентов в экваториальную плоскость веретена деления. При этом они ориентируются таким образом, что центромеры гомологичных хромосом обращены к противоположным полюсам клетки. Метафаза I мейоза принципиально отличается от метафазы митоза тем, что в плоскости экватора расположены спаренные хромосомы, повернутые на 900 относительно своей оси.

В анафазе I хромосомы перемещаются к полюсам клетки. Однако в отличие от митоза к полюсам расходятся не сестринские хроматиды, а гомологичные хромосомы.
В телофазе I хромосомы достигают полюсов клетки, причем у каждого полюса оказывается гаплоидное число хромосом. В дальнейшем в телофазе I мейоза происходят процессы, аналогичные телофазе митоза – деконденсация хромосом, восстановление нуклеолеммы, образование ядрышек и цитокинез. На этомредукционное деление мейоза (мейоз I) заканчивается.

Интеркинез, разделяющий первое и второе деления мейоза, отличается от обычной интерфазы отсутствием репликации ДНК. Иногда в интеркинезе хромосомы остаются в конденсированном состоянии, сохраняя свои морфологические особенности.

Эквационное деление мейоза (мейоз II) протекает сходно с митозом, но на гаплоидном уровне. После непродолжительной профазы и растворения нуклеолеммы двухроматидные хромосомы формируют митотическую фигуру. На стадии анафазы сестринские хроматиды становятся свободными хромосомами и отходят к полюсам клетки.
Таким образом, мейотическое деление одной клетки с диплоидным набором хромосом обеспечивает образование четырех клеток с гаплоидным набором хромосом. Их дальнейшая судьба зависит от типа мейоза, который характерен для данного вида. При наиболее распространенном гаметном типе порождаемые мейозом клетки дифференцируются в гаметы. Редукция числа хромосом представляет собой основной, но не единственный результат мейоза. Большое значение для биологии вида имеет также создаваемая мейозом комбинаторная наследственная изменчивость, которая возникает благодаря случайному распределению родительских хромосом по гаметам и кроссинговеру.

 
1   2   3   4   5   6   7   8   9

перейти в каталог файлов


связь с админом