Главная страница
qrcode

Вода. Учебное пособие для студентов медицинского университета самара 2002 удк 612. 02


НазваниеУчебное пособие для студентов медицинского университета самара 2002 удк 612. 02
АнкорВода.doc
Дата12.08.2018
Размер0.74 Mb.
Формат файлаdoc
Имя файлаВода.doc
ТипУчебное пособие
#44207
страница2 из 7
Каталог
1   2   3   4   5   6   7



Таблица 2.

Распределение воды в организме.





Процент от веса тела

Объем, л


Внутриклеточная жидкость

40

28

Внеклеточная жидкость

Интерстициальная

Внутрисосудистая

20

(15)

(5)

14

(11)

(3)

Общая вода тела

60

42



Таблица 3.

Взаимоотношение общей воды тела (ОВТ) и массы тела.





ОВТ (проценты)

Мужчины

ОВТ (проценты)

Женщины

ОВТ (проценты)

Дети

Норма


60

50

70

Худощавые

70

60

80

Полные


50

42

60


Осмотическое давление, создаваемое высокомолекулярными коллоидными веществами, называется коллоидно-осмотическим или онкотическим давлением (КОД). В плазме крови такими веществами являются альбумины, глобулины и фибриноген. В норме КОД колеблется в пределах 25-28 мм рт.ст. Львиная доля КОД, создаваемая белками плазмы, приходится на альбумины – 80%; на глобулины приходится 16-18%; 2% - на белки свертывающей системы крови. Отметим, что, в сосудистом русле содержится около 120 г альбуминов.

Интерстициальная жидкость. Объем интерстициальной жидкости (ИСЖ) составляет 15% от массы тела – это среда , в которой «живут» и активно функционируют клетки и которая является своеобразным буфером между внутрисосудистым и клеточным водными секторами. ИСЖ выполняет роль буфера не только в отношении химизма внеклеточного и цитоплазматического состава, но и в отношении емкости вместилища ИСЖ. За счет жидкости интерстициального сектора происходит компенсация объема плазмы при острой и хронической кровопотере и плазмопотере или, наоборот, депонирование в межклеточных пространствах определенного объема воды переливаемых жидкостей – крови, кровезаменителей или кристаллоидных растворов без значительного увеличения массы циркулирующей жидкости. ИСЖ отличается от плазмы крови значительно меньшим содержанием белка альбумина – 4 г/л, однако всегда изотонична и изоосмолярна по отношению к плазме.

Трансцеллюлярный сектор представляет собой жидкость, которая располагается в полостях организма – СМЖ, жидкость в межплевральном пространстве, в пищеварительном тракте и т.п. Общее количество влаги трансцеллюлярной жидкости колеблется в пределах 1-2% от массы тела, хотя интенсивность выделения и реабсорбции воды из желудочно-кишечного тракта очень велика – до 8-10 л/сутки.

Внутриклеточное пространство. Вода в клетках окружает внутриклеточные структуры – ядро и другие органеллы. Она обеспечивает их жизнедеятельность и фактически является составной частью протоплазмы клеток. В отличие от внеклеточной, во внутриклеточной жидкости отмечается более высокий уровень белка и катионов калия и небольшое количество ионов натрия. Основным цитоплазматическим катионом является калий, основными анионами – фосфат и белки. Ионы калия составляют примерно 2/3 активных катионов, около 1/3 приходится на долю ионов магния и кальция. Несмотря на отличия в обмене, электролитном составе, рН и некоторых других параметров внеклеточной и внутриклеточной жидкостей, оба сектора являются электронейтральными и изоосмолярными. Это обстоятельство связано с особенностями, присущими цитоплазматическим мембранам – биоструктурам, обладающим удивительными размерами. Например, толщина цитоплазматической мембраны достигает всего лишь 6-8 нанометров (один нм равен м). Одна из особенностей цитоплазматической мембраны связана с явлением полупроницаемости. Так, мембрана легко проходима для ионов калия, однако она почти не пропускает ионов натрия, чем обеспечивается разный ионный состав внеклеточной и цитоплазматической жидкостей. Благодаря этому свойству формируются электрические биопотенциалы тканей и органов, обеспечиваются сократительные процессы мышц и т.д.

Полупроницаемость мембран поддерживается постоянной активностью и деятельностью ферментов и насосов, которые обеспечивают к тому же непрерывное восстановление химического гомеостаза, например натрий-калиевый насос. Благодаря АТФ натрий-калиевый насос изгоняет из цитоплазмы постоянно диффундирующие из околоклеточной среды ионы натрия, а взамен им в клетку вводит эквивалентное количество ионов калия. Отсюда понятно, что нарушение биоэнергетики клетки может привести к выравниванию концентраций ионов натрия и калия в околоклеточной и внутриклеточной жидкостях с изменением осмотических свойств этих сред. Например, воспаление как типовой патологический процесс характеризуется гиперосмией, когда осмотическое давление внеклеточного сектора может значительно повышаться, достигая величины 7600 мм рт. ст. и выше.

Второй составляющей, обеспечивающей механизм поддержания водно-электролитного баланса, является кислотно-основное состояние (КОС) как один из компонентов постоянства внутренней среды. Это отдельная глава физиологии и патофизиологии, которой мы уделим должное внимание, разбирая клинический материал. Однако сейчас напомним, что несмотря на постоянное образование в организме кислот (только угольной кислоты за сутки образуется такое количество, которое эквивалентно нескольким литрам концентрированной серной кислоты), параметры КОС артериальной крови остаются постоянными.

Показателями нормальных величин КОС являются значение рН (рН представляет собой отрицательный десятичный логарифм концентрации водородных ионов – величина активной реакции крови), фиксированное на значении 7,40 (7,35-7, 45); – напряжение углекислого газа равно 40 (35-45); – напряжение кислорода равно 90-95 мм рт. ст. и их производные:

1) общее значение буферных оснований (ВВ) – 44-48 (40-60 ммоль/л), при , равном 40 мм рт.ст.;

2) стандартный бикарбонат (SB) – концентрация бикарбонатов в плазме при , равном 40 мм рт. ст. Нормальное значение SB оценивается в 24 ммоль/л (23-26 ммоль/л);

3) избыток или недостаток (дефицит) оснований (ВЕ). Этим термином обозначают среднее количество сильного основания или кислоты в ммолях, добавленные к 1 л крови, если средние условные данные принять за 0. Нормальное значение ВЕ колеблется от +2,5 до –2,5 ммоль/л.

Сдвиг рН ниже 7,40 свидетельствует об ацидозе, а выше 7,40 – об алкалозе. Дополнительные производные от рН, и , т.е. ВВ, SB и ВЕ дают возможность говорить о степени компенсации этих состояний, которые обеспечиваются буферными системами крови.

К буферным системам относят:

1) гидрокарбонатную систему (). На нее приходится 53% буферных оснований;

2) гемоглобиновую систему () – 35%;

3) протеиновую систему – 7%;

4) фосфатную систему – 5%.

Сердечно-сосудистая система. Третьей составляющей, обеспечивающей механизмы поддержания водно-электролитного гомеостаза, является сердечно-сосудистая система. Внутрисосудистый сектор является частью внеклеточного водного пространства. Белки плазмы создают КОД, представляющее собой силу, удерживающую жидкость в сосудах. Постоянство электролитного состава плазмы играет важную роль в регуляции баланса жидкости и КОС. Адекватный объем сосудистого сектора – важнейшее условие адекватного венозного возврата и сердечного выброса. Изменение объема крови неминуемо ведет к нарушению деятельности сердечно сосудистой системы. Основными факторами, характеризующими состояние кровообращения и его эффективность, представленные в таблицах 5 и 6, являются:

1. МОС – минутный объем сердца;

2. ОПС – общее периферическое сопротивление;

3. ОЦК – объем циркулирующей крови.

Таблица 4.

Основные показатели кровообращения.


Минутный объем сердца (МОС)

5-7 л/мин.

Сердечный индекс (СИ)

3-3,5 л/(мин.)

Ударный объем (УО)

70-80 мл

Среднее время циркуляции

10-16 сек.

Время полного кругооборота крови (ВПК)

40-60 сек.

Частота сердечных сокращений (ЧСС)

60-80 уд./мин.

Работа левого желудочка

59-69 Дж.

Объем циркулирующей крови (ОЦК)

65-70 мл/кг

Объем циркулирующей плазмы

4-5% массы тела

Центральный объем крови (ЦОК)

15-18 мл/кг

Венозный объем крови

70-80% ОЦК

Среднее артериальное давление (САД)

90-95 мм рт. ст.

Центральное венозное давление (ЦВД)

50-120 мм вод. ст.

Венозный тонус

0,6-1,4 Ед.

Общее периферическое сопротивление

900-1300 дин/сек./смз

Гидростатическое давление на артериальном конце капилляра

20-30 мм рт. ст.


Таблица 5.

Среднее значение объема крови в зависимости от пола и возраста

(процент от массы тела).

Новорожденный

8,5


Ребенок двух лет

7,5

Мужчина молодого и среднего возраста

7

Женщина

6,5

Пожилой мужчина

6,5

Пожилая женщина

6



Регуляция водно-электролитного баланса осуществляется комплексом нейроэндокринных механизмов, направленных на поддержание постоянства объема и осмотического давления жидкости внеклеточного сектора и, прежде всего, плазмы крови. Оба указанных параметра тесно взаимосвязаны, но механизмы их коррекции относительно автономны.

Нервная система обеспечивает интеграцию функций организма и направление стимулов к строго заданным группам клеток, эндокринная система способствует выработке сигнала, передаваемого ко всем клеткам, где есть соответствующие химические рецепторы.

Поступление жидкости в организм определяется чувством жажды, которая формируется соответствующим центром в переднемедиальном отделе гипоталамуса. Сигналом для возбуждения его нейронов является гиперосмия внеклеточной жидкости.

Сбалансированное выделение воды и электролитов осуществляется почками. В регуляции выделительной функции почек важнейшую роль играют:

  • антидиуретический гормон гипофиза (АДГ, вазопрессин);

  • ренин-ангиотензин-альдостероновая система (РААС);

  • предсердный натрийуретический фактор (ПНФ);

  • простагландины (ПГ);

  • ктехоламины (КА);

  • глюкокортикоиды и др.

Роль антидиуретического гормона. АДГ секретируется в супраоптическои и паравентрикулярном ядрах гипоталамуса и накапливается в задней доле гипофиза.

РЕГУЛЯЦИЯ


Жажда

  •  осмолярности плазмы

  • крови (> 285 мОсм/л);

  • дегидратация клеток;

  • АТ-II

Величина диуреза


  • АДГ;

  • РААС;

  • ПНФ;

  • ПГ, КА;

  • глюкокортикоиды


Стимулируют выделение АДГ:

  • увеличение осмолярности плазмы;

  • уменьшение наполнения предсердий, легочных вен, артериальных сосудов шеи, грудной клетки (например, приуменьшении ОЦК и длительном вертикальном положении человека);

  • стрессовые ситуации (боль, волнение);

  • тошнота, рвота;

  • ангиотензин-II;

  • -адреномиметики;

  • ацетилхолин;

  • никотин, фенобарлитал, эфир.

Раздражая рецепторы дистальных канальцев и собирательных трубочек, АДГ увеличивает реабсорбцию воды, задерживая ее в организме, и уменьшает диурез. Кроме того, АДГ участвует в поддержании сосудистого тонуса и регуляции артериального давления. Выраженный вазопрессорный эффект АДГ реализуется при его концентрациях, во много раз превышающих антидиуретические (порядка ).

Тормозят выделение АДГ:

  • уменьшение осмолярности плазмы крови;

  • увеличение наполнения предсердий, артериальных сосудов шеи и грудной клетки (например, при гиперволемии, длительном горизонтальном положении человека, в состоянии невесомости и др.);

  • охлаждение;

  • -адреномиметики;

  • этанол, морфин, резерпин;

  • глюкокортикоиды (при одновременном повышении чувствительности рецепторов почечных канальцев к АДГ).

При уменьшении выделения АДГ диурез увеличивается и больше воды выводится из организма.

Роль ренин-ангиотензин-альдостероновой системы (РААС). В ЮГА почек образуется и накапливается ренин, который как гормон выделяется в кровь при:

  • уменьшении почечного кровотока, обусловленного как заболеваниями самих почек, так и уменьшением объема циркулирующей крови, снижением АД;

  • увеличении в моче натрия и хлора;

  • использовании естественных исинтетических адреномиметиков, простациклина и др.

В плазме крови под влиянием ренина из -глобулина образуется декапептид ангиотензин-I (АT-I), который при участии ангиотензинпревращающего фермента (АПФ), преимущественно в легких, а также в сосудах, переходит в октапептид ангиотензин-II (AT-II) и далее – в ангиотензин-III (AT-III). AT-II стимулирует центр жажды, повышает активность симпатических нервов, обладает прессорными свойствами (вызывает спазм сосудов) и уменьшает скорость клубочковой фильтрации, стимулирует выделение АДГ, что способствует задержке воды в организме. AT-II и AT-III являются мощными стимуляторами клубочковой зоны коры надпочечников и усиливают выделение минералокортикоида альдостерона. Выброс альдостерона может увеличиваться под влиянием гипонатриемии, гиперкалиемии, ПГЕ, АКТГ.

Альдостерон активирует реальсорбцию ионов натрия и секрецию калия и водорода. Задержка натрия сопровождается увеличением осмолярности плазмы крови, что приводит к выделению АДГ и усилению реабсорбции воды, уменьшению диуреза и задержке жидкости в организме. Выделение ренина из ЮГА почек тормозят:

  • АДГ, альдостерон (по принципу обратной связи);

  • увеличение ОЦК;

  • гипернатриемия;

  • -адренобдлокаторы и др.

Блокаторы АПФ (например эналаприл) препятствуют превращению AT-I в AT-II и AT-III и тормозят выброс альдостерона. Уменьшение выделения альдостерона наблюдается при действии :

  • ПНФ, который блокирует рецепторы AT-II и AT-III в клубочковой зоне коры надпочечников;

  • гипернатриемии, кипокалиемии;;

  • при увеличении ОЦК

  • дофамина, спиронолактона.

Описанные механизмы регулируют прежде всего содержание общей воды на уровне целостного организма и величину ОЦК.

Обмен воды между сосудистым руслом и тканями осуществляется по известному закону Старлинга (см. схему).

В артериальной части капилляра гидростатическое давление (25-32 мм рт. ст.), «выдавливающее» плазму через стенку капилляров, выше онкотического (25-28 мм рт. ст.), удерживающего жидкость в просвете микроциркуляторного русла. Благодаря этому идет процесс фильтрации жидкости. В венозном отделе капилляра онкотическое давление крови сохраняется прежним, а гидростатическое падает (10-15 мм рт. ст.). Жидкость перемещается обратно в просвет капилляров, т.е. реабсорбируется.

В условиях патологии существенное значение приобретает гидростатическое давление в тканевой жидкости (ГДт), равное –1-7 мм рт. ст., и тканевое онкотическое давление (ОДт), равное –5-6 мм рт. ст. Таким образом, эффективное фильтрационное давление (ЭФД) и эффективное резорбционное давление (ЭРД) представляют собой арифметическую сумму следующих составляющих:

ЭФД = ГДа – ОДа + ОДт + ГДт =

30 – 25 + 5 + 3 = 13 мм рт. ст.

ЭРД = ОДк – ГДб – ОДт – ГДт =

25 – 12 – 5 – 3 = 5 мм рт. ст.
Через лимфатические сосуды возможен дополнительный отток межтканевой жидкости в венозные сосуды.

У здорового человека за сутки из крови в ткань фильтруется до 20 л жидкости, 17 л всасывается обратно в капилляры, и около 3 л оттекает из ткани по лимфатическим капиллярам и через лимфатическую систему возвращается в сосудистое русло.


II. ДИСГИДРИИ.
Нарушения водного обмена носят название дисгидрий (данные таблицы 6 и схемы 1). Дисгидрии проявляются двумя формами:

1) гипергидратация – избыточное содержание жидкости в организме;

2) гипогидратация (обезвоживание) – уменьшение общего объема жидкости.

Гипергидратация и гипогидратация подразделяются в свою очередь на три формы:

1) внеклеточная,

2) внутриклеточная,

3) тотальная.

Возможны комбинированные формы дисгидрий – одновременно гипогидрия и гипергидрия, но в разных секторах организма: клеточном и околоклеточном. Важной характеристикой дисгидрий является величина осмотического давления жидкости (в норме 285-300 мосм/л). Осмотическое давление может либо не изменяться (изоосмолярная дисгидрия), либо повышаться (гиперосмолярная дисгидрия), либо снижаться (гипоосмолярная дисгидрия).

Таблица 6.


Нарушения водно-электролитного баланса.

Тоничность

Механизм

Изотоничный (изоосмолярный) дисбаланс.

Увеличение или уменьшение внеклеточной жидкости имеет результатом концентрационный эквивалент 0,9% раствору хлорида натрия (соли) – (физиологический раствор); клетки не сморщиваются и не разбухают.

Гипертоничный (гиперосмолярный) дисбаланс.

Дисбаланс, который имеет в результате концентрацию внеклеточной жидкости выше, чем 0,9% раствор соли, т.е. теряется вода или прибавляются электролиты; клетки сморщиваются в гипертоническом растворе.

Гипотонический (гипоосмолярный) дисбаланс.

Дисбаланс, в результате которого во внеклеточной жидкости меньше, чем 0,9% раствор соли, т.е. увеличивается вода, или уменьшаются электролиты. Клетки отекают в гипотоническом растворе.


Схема 1
1   2   3   4   5   6   7

перейти в каталог файлов


связь с админом